SPHERE Early & Expected Results

– Gaël Chauvin –

Institute of Planetology & Astrophysics of Grenoble, France

Jean-Luc Beuzit (PI), David Mouillet (PS), Gael Chauvin (GTO coordination), Markus Feldt (Co-PI), Pascal Puget (PM), Kjetil Dohlen (SE), F. Wildi (AIT), T. Fusco (AO), M. Kasper (ESO responsible) and numerous participants from 12 European institutes!

IPAG, MPIA, LAM, ONERA, LESIA, INAF, Geneva Observatory, Lagrange, ASTRON, ETH-Z, UvA, ESO

Co-I's: F. Ménard (IPAG, Grenoble), T. Henning (MPIA, Heidelberg), C. Moutou (LAM, Marseille), A. Boccaletti (LESIA, Paris), S. Udry (Observatoire de Genève), M. Turatto (INAF, Padova), H.M. Schmid (ETH, Zurich), F. Vakili (Lagrange, Nice), C. Dominik (UvA, Amsterdam)
1. Introduction to DI
2. Description & Status
3. Key early-Results & Expectations
4. Conclusions & Perspectives
I- Introduction

Observational success

Two decades of exoplanet studies

✿ Hot-Jupiters Discoveries
✿ First glimpse of Exoplanetary atmospheres
✿ Images & revolution of Super-Jupiters
✿ Diversity of planetary architectures
✿ Super-Earths in Habitable Zone
✿ Discovery of Earth-mass planets...

Mayor et al. 11; Triaud et al. 10; Swain et al. 08; Desert et al. 12; Bonfils et al. 09; Udry & Santos 07
Batalha et al. 13; Howard 12
I- Introduction

Hunting Techniques

http://exoplanet.eu/
I- Introduction

Why Imaging?

Direct detection of planetary photons

I/ Orbital & Physical properties

> Giant planets at wide orbits (>10 AU)
> Luminosity, a, e, i, ω, T0

Hd95086 b (5 Mjup at 56AU, Contrast = 10^4, $\Delta L = 9.6$mag)

Rameau et al. 13ab
I- Introduction

Why Imaging?

Direct detection of planetary photons

I/ Orbital & Physical properties
> Giant planets at wide orbits (>10 AU)
> Luminosity, a, e, i, ω, T0

II/ Atmosphere
> Non-strongly irradiated EGPs
> Low-gravity, clouds, non-LTE...

Janson et al. 10; Skemer et al. 12
Konopacky et al. 13; Bonnefoy et al. 13, 14
I- Introduction

Why Imaging?

Direct detection of planetary photons

I/ Orbital & Physical properties
> Giant planets at wide orbits (>10 AU)
> Luminosity, a, e, i, ω, T0

II/ Atmosphere
> Non-strongly irradiated EGPs
> Low-gravity, clouds, non-LTE...
Janson et al. 10; Skemer et al. 12
Konopacky et al. 13; Bonnefoy et al. 13, 14

III/ Architecture
> Dynamical Stability & Evolution
> Planet – disk connection
Mouillet et al. 97; Kalas et al. 04, 08;
Buenzli et al. 10; Rameau et al. 12;
Grady et al. 12; Lagrange et al. 12;
Outline
SPHERE Early & Expected Results

1. Introduction to DI
2. Description & Status
3. Key early-Results & Expectations
4. Conclusions & Perspectives

OHP 2015: 20 years of Giant Exoplanets
The VLT/SPHERE Project

VLT/SPHERE (Beuzit et al. 08)

- **Consortium:** 12 institutes, IPAG, MPIA, LAM, ONERA, LESIA, INAF, OAPD, Geneva Observatory, Lagrange, ASTRON, ETH-Z, UvA + ESO

- **Instruments:**
 - **SAXO**, Extreme AO system
 - NIR (YJHK): **IRDIS** (Dual imaging Spectrograph; 10” FoV) and **IFS** 3D-spectroscopy (1.8” FoV; Res ~30)
 - VIS: **ZIMPOL** (Imaging Polarimeter; Visible; 3.5” FoV)
 - **Coronagraphs:** Classical Lyot, A4P and ALC
VLT/SPHERE – Description & Status

Design

- CPI
- IRDIS
- IFS
- ZIMPOL
- ITTM
- PTTM
- DM
- De-rotator
- HWP2
- Focus 1
- HWP1
- Polar Cal
- Focus 2
- Focus 3
- Focus 4
- NIR corono
- VIS corono
- HWP1
- HWP2
- Polar Cal
- Focus 4
- ZIMPOL
- NIR corono
- VIS corono
- WFS
- NIR corono
- VIS corono
- IRDIS
- DTTS
- PTTM
- NIR corono
- VIS corono
- Focus 2
- Focus 3
- Focus 4
- NIR corono
- VIS corono
- VIS corono
- ZIMPOL
- NIR corono
- VIS corono
Overview

<table>
<thead>
<tr>
<th></th>
<th>ZIMPOL</th>
<th>IRDIS</th>
<th>IFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FoV</td>
<td>Sq 3.5″ (instantaneous) Up to 4″ radius (mosaic)</td>
<td>Sq 11″</td>
<td>Sq 1.77″</td>
</tr>
<tr>
<td>Spectral Range</td>
<td>0.5 – 0.9 μm</td>
<td>0.95 – 2.32 μm</td>
<td>0.95 – 1.35/1.65 μm</td>
</tr>
<tr>
<td>Spectral information</td>
<td>BB, NB</td>
<td>BB, NB</td>
<td>50 / 30</td>
</tr>
<tr>
<td>Linear Polarisation</td>
<td>Simultaneous on same detector, x 2 arms, exchangeable</td>
<td>Simultaneous dual beam, exchangeable</td>
<td>x</td>
</tr>
</tbody>
</table>

Coronography: no /4Q / Lyot

Rotation at Nasmyth:
Pupil-stab. (instrument fixed wrt tel.)
Field-stab (slit spectro, long DIT...)
No rotation: minimize crosstalk...

AO sensitivity for high contrast:
R=9.5 for NIR; R=9 for R; R=7.8 for whole VIS

Separation range where improved contrast:
2 - 20 λ/D, ie 30-300 mas in R,
or 80 – 800 mas in H

Mode switching: not VIS and NIR in same night
Path for Exoplanet Imaging

1. High angular resolution

SAXO Extreme-Adaptive Optics
90% Strehl in H-band;
(Coherent energy In PSF core)

- **Deformable Mirror:**
 High orders; 41 x 41 actuators

- **Wave Front Sensing:**
 Shack-Hartmann, 40x40 lenslets,
 Red-sensitive sub-e CCD
 Frequency = 1.2kHz
 Anti-aliasing spatial filtering

- **Sparta Real-Time Computer**
 Command; non-common path
 aberration corrections
1. High angular resolution

SAXO Extreme-Adaptive Optics
90% Strehl in H-band;
(Coherent energy in PSF core)

- **Deformable Mirror:**
 High orders; 41 x 41 actuators

- **Wave Front Sensing:**
 Shack-Hartmann, 40x40 lenslets,
 Red-sensitive sub-e CCD
 Frequency = 1.2kHz
 Anti-aliasing spatial filtering

- **Sparta Real-Time Computer**
 Command; non-common path aberration corrections

Contrast = 10^{-3}

median seeing 0.8”

1”
1. High angular resolution
Exquisite PSF temporal stability

IRDIS: 2 images separated by 20 min in time
H-band
Path for Exoplanet Imaging

1. High angular resolution
 XAO works, also in visible!

IRDIS/Comm-1
May 2014
Path for Exoplanet Imaging

1. High angular resolution
2. Stellar-light attenuation

Coronagraphy (B. Lyot)

- Pupil and Image Control
 - PTTM, ITTM/HODM
 - Low-aberrations/Centering control (DTTS)

- Pupil Masks:
 - Apodizer or/and Lyot Stop

- Focal plane masks:
 - Classical Lyot Coronograph
 - Apodized Classical-Lyot
 - Apodized 4QP Mask, Boccaletti et al. 08

Contrast = 10^{-4}

median seeing 0.8”

SPHERE/Comm-1
May 2014

VLT/SPHERE – Description & Status
Path for Exoplanet Imaging

1. High angular resolution
2. Stellar-light attenuation

IRDIS Coronography in H-band
3-20 lambda/D
H-band, 120 – 800mas
30pc, 4 – 26 AU
Path for Exoplanet Imaging

1. High angular resolution
2. Stellar-light attenuation
3. Speckles subtraction

Main limitation (<1.0’’):
Residual Turbulent/quasi-statics speckles

- Differential Imaging techniques
 . Polarimetric (PDI)
 . Spectral (SDI), Close et al. 05
 . Angular (ADI), Marois et al. 06

- Minimizing WFE (Coffee, ZELDA...)

- Post-processing tools
 . LOCI, Lafrenière et al. 07
 . ANDROMEDA, Mugnier et al. 10
 . KLIP/PCA, Soummer et al. 12

SPHERE@IPAG
Sr = 90%
DBI: H2-H3
Apo+Stop

median seeing 0.8”
Contrast = 10^-6
1”
Detection performances
VLT/SPHERE – Description & Status

Detection performances

![Graph showing detection performances](image)

1 Mjup @6 AU
(10 Myr star at 30pc)
Since 1^{st} Light...

• **Science Verification in Dec. 2014**
 - Fully operated by ESO team, validating actual operations of various modes
 - Public data, covering a variety of science topics

• **Open time with SPHERE:**
 - 1st Call in Sep. 2014 (from instrument validation after 2 commissionning runs only): for observations Apr – Sept 2015
 - 2nd call in March 2015: 204 night proposed, covering all SPHERE modes
 - **Now, 3rd call in Oct. 1st, 2015**

• **Guarantee Time Observations:**
 - 260 nights over 5 years, started in Feb 2015
 - Organised as a project in its own, with 4 science programs:
 ✓ NIRSUR (200 nights): Survey for Exoplanets of 400-600 stars in NIR
 ✓ DISK (20 nights): Survey for Proto-planetary & Debris Disks Study
 ✓ REFPLANETS (18 nights): Planets in Visible/Reflected Light
 ✓ OSCIENCE (12 nights): Solar systems, Evolved stard, Clusters, X-Gal...
Since 1st Light...

Guaranteed Time Observations

• Observing runs in visitor mode
• Current status (Oct 2015)

<table>
<thead>
<tr>
<th>Category</th>
<th>Executed GTO nights</th>
<th>Future GTO nights</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIRSUR (200n)</td>
<td>37.5n</td>
<td>-> 75 nights</td>
</tr>
<tr>
<td>DISK (20n)</td>
<td>5n</td>
<td>-> 11 nights</td>
</tr>
<tr>
<td>REFPLANETS (18n)</td>
<td>2n</td>
<td>-> 3 nights</td>
</tr>
<tr>
<td>OSCIENCE (12n)</td>
<td>3n</td>
<td>-> 4.5 nights</td>
</tr>
</tbody>
</table>

• Downtime statistics

Weather loss (mostly humidity and wind) ~ 25%

SPHERE (+ VLT) technical loss < 5%

• Obtained data

NIRSUR: 120+ targets in good or very good conditions (known and new targets)
DISK: 10 targets (known disks)
REFPLANETS: 1 target (alpha Cen)
OSCIENCE: 10 targets (Ceres, clusters, evolved stars)
1. Introduction to DI
2. Description & Status
3. Key early-Results & Expectations
4. Conclusions & Perspectives

OHP 2015: 20 years of Giant Exoplanets
4.1 Protoplanetary Disks
 - HD142527, MWC758

4.2 Debris disks
 - AU Mic, HD106906

4.3 Brown dwarfs
 - GJ758, 2M0122-2439

4.4 Exoplanetary systems
 - HR8799bcde, β Pic b

4.4 Evolved stars, Solar Systems...
 - Betelgeuse, Titan, R Aquarii

R Aquarii, Symbiotic binary (42mas)
4.1 Proto-planetary Disks

Spirals & Planetary perturbers

HD142527
Herbig F6 star, 3-7 Myr
d = 145±15pc; Sco OB2-2 member

ALMA/NICI/NACO/HiCIAO
Huge continuum cavity
CO gas in Keplerian rotation
Cassasus et al. (2012, 2013) Rameau et al. (2012; Fujiwara et al. (2006)

Comm-2, July 2014; ZIMPOL
1 – 1.5hr Telescope time
Double-based-difference
R+I Color Polarimetry
4.1 Proto-planetary Disks

Spirals & Planetary perturbers

HD142527
Herbig F6 star, 3-7 Myr
d = 145+15pc; Sco OB2-2 member

ALMA/NICI/NACO/HiCIAO
Huge continuum cavity
CO gas in Keplerian rotation
Cassasus et al. (2012, 2013) Rameau et al. (2012; Fujiwara et al. (2006)

Comm-2, July 2014; ZIMPOL
1 – 1.5hr Telescope time
Double-based-difference
R+I Color Polarimetry

VLT/SPHERE – 1st Light GTO Results
4.1 Proto-planetary Disks

Spirals & Planetary perturbers

HD142527
Herbig F6 star, 3-7 Myr
d = 145+15pc; Sco OB2-2 member

ALMA/NICI/NACO/HiCIAO
Huge continuum cavity
CO gas in Keplerian rotation
Cassasus et al. (2012, 2013) Rameau et al. (2012; Fujiwara et al. (2006)

Comm-2, July 2014; ZIMPOL
1 – 1.5hr Telescope time
Double-based-difference
R+I Color Polarimetry

Ménard et al. 2015, A&A, in prep
4.1 Proto-planetary Disks

Spirals & Planetary perturbers

MWC758
Herbig A5 star, 3.5 Myr; d=240 pc
73-AU cavity seen in mm,
i~21°, PA~65° (Isella et al. 2010)

SPHERE SVT (Dec 5th, 2014)
IRDIS –DPI, Y band (1.04µm),
ALC_YJH_S corono (185 mas φ)
18min on Target!

Spiral structures resolved
Contrast and pitch angle explained
by a marginally unstable disk with
embedded planets?
4.2 Debris Disks

Discovering new systems!

HD106906AB
Lowe Centaurus Cruxc Group Member
Age = 13+-2 Myr; d= 98.2pc
Resolved as a tight binary (VLTI/PIONIER)
11+-2Mjup Planetary Mass Companion
Located at 650 AU (Bailey et al. 2014)

IRDIS DBI_H23, NIRSUR, March 30th, 2015
4.2 Debris Disks

Discovering new systems!

HD106906AB
Lowe Centaurus Cruxc Group Member
Age = 13+/-2 Myr; d= 98.2pc
Resolved as a tight binary (VLTI/PIONIER)
11+/-2Mjup Planetary Mass Companion
Located at 650 AU (Bailey et al. 2014)

IRDIS DBI_H23, NIRSUR, March 30th, 2015

New edge-on & narrow ring resolved,
r0~66+/-1.8AU, i~85.4+/-0.1°,
PA~104.4+/-0.3°, g = 0.6+/-0.1
(HR4796, The Moth, HD15115 analogs)
Strong brightness asymmetry

Lagrange et al. 2015, A&A, accepted
4.2 Debris Disks

Discovering the unexpected!

AU Mic
M1Ve star
Beta Pictoris Moving Group Member
Age = 23+3 Myr; d = 9.94pc

Debris disk resolved by Kalas et al. (2004)

Emblematic system observed with HST, Keck, NaCo, NICI... see Liu et al. (2004); Krist et al. (2005); Fitzgerald et al. (2007); Graham et al. (2007); Schneider et al. (2014)

IRDIS coronographic sequence in BB-J
August 10th, 2014 (Comm-3)
VLT/SPHERE – 1st Light GTO Results

4.2 Debris Disks

13"

SPHERE 2014 rdl
SPHERE 2014 noadi
SPHERE 2014 adi
SPHERE 2014 klip
SPHERE 2014 loci
4.2 Debris Disks

A, B (E, C, D) are moving in time...
4.2 Debris Disks

VLT/SPHERE – 1st Light GTO Results

13"

[Graph showing elevation from midplane + constant vs. projected separation]
4.2 Debris Disks

Discovering the unexpected!

Origin?

• **Gaz-induced structures**: wind disk, photophoresis, jets...
 BUT, low content of gas (Roberge et al. (2005))

• **Interaction with another body?**
 - **Giant collisions**: (Kral et al. 2014): triggers eccentric rings. Clumps if edge-on but localized in the plane of collision. Timescale of ~ 100 yrs. Patterns on Keplerian orbits.
 - **spiral waves** triggered by self-gravity or planets: need gas ... but how much?
 - **outflow** (sporadic) from a planet:
 - **planet/disk interaction**: circumplanetary disk (Fendt et al. 2003). requires the planet axis to be tilted and again gas to form the disk
 - **star/planet/disk interaction**: plasma from a magnetosphere (Kivelson et al. 2005).

4.3 Brown Dwarfs

A super-solar metallicity atmosphere for GJ758 B?

GJ758, G9V, 15.8pc
metal-rich dwarf,
BD companion @46AU
(Thalmann et al. 2009)

IRDIS DBI
(Y23, H23, K12)
Aug 13-14th, 2014
(Comm-3)
4.3 Brown Dwarfs

A super-solar metallicity atmosphere for GJ758 B?

GJ758, G9V, 15.8pc metal-rich dwarf, BD companion @46AU (Thalman et al. 2009)

IRDIS DBI (Y23, H23, K12) Aug 13-14th, 2014 (Comm-3)
4.3 Brown Dwarfs

A super-solar metallicity atmosphere for GJ758 B?

GJ758, G9V, 15.8pc metal-rich dwarf, BD companion @46AU (Thalman et al. 2009)

IRDIS DBI (Y23, H23, K12) Aug 13-14th, 2014 (Comm-3)

3.2″
4.3 Brown Dwarfs

A super-solar metallicity atmosphere for GJ758 B?

GJ758, G9V, 15.8pc metal-rich dwarf, BD companion @46AU (Thalman et al. 2009)

IRDIS DBI (Y23, H23, K12) Aug 13-14th, 2014 (Comm-3)

SED Analysis (1-5 μm) Confirmed T8 SpT, but no good empirical Comparison.
Atmosphere fit: Teff = 600+/-100K, and probably metal-rich (but lack of grids).

4.3 Brown Dwarfs

Accessing higher resolution with IRDIS-LSS

2M0122-2439 M3.5V 120 Myr old star at 36pc
12-27 M\textsubscript{jup} young mid-L companion (Bowler et al. 2013)

IRDIS-LSS in LRS/MRS
Dec 6th, 2014 (SVT)
4.3 Brown Dwarfs

Accessing higher resolution with IRDIS-LSS

2M0122-2439 M3.5V 120 Myr old star at 36pc
12-27 M_{jup} young mid-L companion (Bowler et al. 2013)

IRDIS-LSS in LRS/MRS
Dec 6th, 2014 (SVT)

Spectral indexes:
(FeH, VO, KI, H-band)
SpT L4+-1, INT-G

Atmospheric model:
$T_{\text{eff}} = 1600 \pm 100$ K
$log(g) = 4.5 \pm 0.5$ dex.

Hinkley et al. 2015,
ApJ, 805, 10
Revisiting HR8799bcde

A5V Columba member (30-40 Myr), d = 39.4pc
Planets bcde imaged (Marois et al. 2008, 2010)

IRDIS (+IFS) observations
Comm-2 and -3, SVT (Jul – Dec, 2014)
4.4 Exoplanets

Revisiting HR8799bcde

Combining SPHERE/IFS and IRDIS with GPI/OSIRIS/P1640/LBT

Planets b and c: reproduced by SED of peculiar or young, L9-T2 brown-dwarfs dereddened with Corundum grains.

Planets d and e: share similar properties with population of young, dusty L6-L8 dwarfs.

Atmospheric fits:
(BT-SETTL14, Exo-REM4, Cloud AE-60):
Teff = 1100 – 1300 K
Log(g) = 3.5-4.5
Bad fit for Planet b > clouds?
Revisiting HR8799bcde

Orbital fitting:
Planets @68, 42, 27 and 14 AU
Coplanarity and circular orbits for e, b and c; d non-coplanar and higher eccentricity (<0.3)

Dynamical Stability:
Unstable or chaotic solutions for d and e masses > 13 M_{jup}; Possible mean motion resonances:
- b – c: 5:2 or 3:1
- c – d: 2:1
- d – e: 3:2 or 2:1

Soummer et al. 11; Esposito et al. 13; Pueyo et al. 15

4.4 Exoplanets

Pushing the limit of Astrometric/Photometric monitoring

β Pic b monitoring
NaCo + SPHERE data since 2003
Planet@9AU, ecc < 0.2, (i = 88.9°)
Lagrange et al. 10; Chauvin et al. 12
Bonnefoy et al. 14;

Waffle Calibration: (2% stability - 2hrs)
β Pic b: 0.05 mag & 2mas precision

IRDIS-DBI (H23)
4.4 Exoplanets

Pushing the limit of Astrometric/Photometric monitoring

β Pic b monitoring
NaCo + SPHERE data since 2003
Planet@9AU, ecc < 0.2, \(i = 88.9^{\circ}\)
Lagrange et al. 10; Chauvin et al. 12
Bonnefoy et al. 14;

Waffle Calibration: (2% stability - 2hrs)
β Pic b: 0.05 mag & 2mas precision

IRDIS-DBI (H23)
4.4 Exoplanets

Formation/Occurrence of Giant Planets at Wide Orbits

- **In-situ Core Accretion** does not work at > 20-30 AU
 - Gravo-turbulent fragmentation or Disk Gravitational Instability?
 - Alternatives: Pebble accretion or tidal downsizing?

 Hennebelel & Chabrier 11; Dodson –Robinson et al. 09; Lambrechts & Johansen 12

- **Dynamical evolution & stability**
 - outward migration (corotation torque), planet scattering & resonances

 Crida et al. 09; Scharf & Menou 09
4.4 Exoplanets

Formation/Occurrence of Giant Planets at Wide Orbits

• From previous DI surveys Occurrence (>40 AU): GI, not a dominant mechanism based on current predictions/observations Or need second steps of fragmentation?

• Bulk of the CA population not “currently” accessible in Direct Imaging with SPHERE and GPI!

(Rameau et al. 13)

Mordasini et al. simulations for 2Msun stars
Outline

SPHERE Early & Expected Results

1. Introduction to DI
2. Description & Status
3. Key early-Results & Expectations
4. Conclusions & Perspectives

OHP 2015: 20 years of Giant Exoplanets
Conclusions/Perspectives

SPHERE is now fully functional: it works well!
- As in laboratory (calibrations, behaviour on internal source, DBI)
- And new validations possible only on sky (interfaces, atmosphere, UT, sensitivity, derotator, ADCs, DM shape control under external conditions, vibrations, configuration changes, polarization sequences and efficiency)

Operation
- Fully under ESO responsibility since December 2014
- Calibration scheme functional
- Minor corrections (observing templates, motor control, etc.)
- Pipeline: baseline under evolution to include on-sky feedback

Performances are great!

Future plans
- Deformable mirror mitigation plan (HODM2)
- Performance improvement: focal plane sensor, ZELDA, COFFEE, etc.
- New coronagraphs, SAM
Conclusions/Perspectives

GTO has now started (Feb 2015)

Impressive Early-Results

- **Proto-planetary & debris disks**
 Impressive structures revealed (HD142527, MWC758, AU Mic, HD106906...)
 A machine for circumstellar disk characterization and discovery
 Access to a wide spectral range, reasonable FoV, polarimetric modes...

- **Exoplanets & Brown dwarfs**
 First characterization results published (GJ758, HR8799, PZTel....)
 Already illustrate:
 - detection performances,
 - astrometric and photometric precision,
 - observing modes versatility (IFS, IRDIS-DBI, Hα-ASDI, LSS),
 Main NIRSUR Survey (200 nights) just started,
 but 40 nights of observations already obtained.~120 targets observed

- **Not only disks and exoplanets:**
 Symbiotic stars, R Aquarii (Schmid et al. 2015, A&A, in prep)
 Titan haze with ZIMPOL (Bazon et al. 2015, A&A, in prep)
Conclusions/Perspectives

GTO has now started (Feb 2015)

Impressive Early-Results

Exciting Perspectives

• Complete census of young, massive giant exoplanets beyond 5-10 AU (around young, nearby A-M stars)

• Physics of exoplanetary atmospheres, especially Young T and Y types
 Thick clouds, metal-enhancement, non-LTE, effect of low-gravity ...
 Photometric variability > Weather studies of Exoplanets

• Architecture of planetary systems: Planet – Disk, Planet - Planet interactions, dynamical stability studies & possible sites for telluric planets...

• Formation & Evolution to test predictions of Planetary Formation theories
 1/ using statistical output from systematic SPHERE survey
 2/ Deriving dynamical mass in combination with RV/Astrometry to get Mass – Luminosity & evolution relationship and test Physics of Accretion & Evolution of exoplanets (Hot/Warm/Cold Start models)