Architectural and Chemical Insights into the Origin of Hot Jupiters

Kevin Schlaufman1,2 and Josh Winn3

1Carnegie Observatories
2Princeton University
3MIT Kavli Institute for Astrophysics and Space Research

OHP 2015: Twenty years of giant exoplanets
6 October 2015
The Exoplanet Population

Kevin Schlaufman
6 October 2015
How do these Hot Jupiters Form?

Disk-driven migration

Lin et al. (1996)
How do these Hot Jupiters Form?

Weidenschilling & Marzari (1996)

Rasio & Ford (1996)

Planet-planet scattering
How do these Hot Jupiters Form?

Kozai-Lidov migration

Holman et al. (1997)
Mazeh et al. (1997)
Kiseleva et al. (1998)
Fabrycky & Tremaine (2007)
How do these Hot Jupiters Form?

<table>
<thead>
<tr>
<th>Process</th>
<th>Spin-orbit misalignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk-driven migration</td>
<td>No</td>
</tr>
<tr>
<td>Planet-planet scattering</td>
<td>Yes</td>
</tr>
<tr>
<td>Kozai-Lidov migration</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Yes should be observed

No should not be observed
How do these Hot Jupiters Form?

<table>
<thead>
<tr>
<th>Method</th>
<th>Spin-orbit misalignment</th>
<th>Binary companion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk-driven migration</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Planet-planet scattering</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Kozai-Lidov migration</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Yes should be observed

No should not be observed

Kevin Schlaufman
6 October 2015
How do these Hot Jupiters Form?

<table>
<thead>
<tr>
<th></th>
<th>Spin-orbit misalignment</th>
<th>Binary companion</th>
<th>“Loneliness”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk-driven</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>migration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planet-planet</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>scattering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kozai-Lidov</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>migration</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Yes** should be observed
- **No** should not be observed
Some Lore: Hot Jupiters are Lonely

Wright et al. (2009)
Steffen et al. (2012)
Some Lore: Hot Jupiters are Lonely

Kevin Schlaufman
6 October 2015

\[
P(GP | HJ) = ?
\]

Wright et al. (2009)
Steffen et al. (2012)

\[P(GP) = \text{Giant-planet probability}\]
\[P(HJ) = \text{Hot-Jupiter probability}\]
Bayes' Theorem

\[
P(GP | HJ) = \frac{P(HJ | GP) P(GP)}{P(HJ | GP) P(GP) + P(HJ | GP') P(GP')}
\]

- \(P(GP) \) = Giant-planet probability
- \(P(HJ) \) = Hot-Jupiter probability
Giant Planet Probability

Cumming et al. (2008)
Wright et al. (2012)

Kevin Schlaufman
6 October 2015
Bayes' Theorem

\[P(GP|HJ) = \frac{P(HJ|GP)P(GP)}{P(HJ|GP)P(GP) + P(HJ|GP')P(GP')} \]

\[P(GP) = 0.084^{+0.01}_{-0.01} \text{ (e.g., Cumming et al. 2008)} \]
\[P(HJ) = 0.012^{+0.004}_{-0.003} \text{ (e.g., Wright et al. 2012)} \]
Bayes' Theorem

\[P(GP|HJ) = \frac{P(HJ|GP)P(GP)}{P(HJ|GP)P(GP) + P(HJ|GP')P(GP')} \]

\[P(GP) = 0.084^{+0.01}_{-0.01} \text{ (e.g., Cumming et al. 2008)} \]
\[P(HJ) = 0.012^{+0.004}_{-0.003} \text{ (e.g., Wright et al. 2012)} \]
\[P(GP') = 1 - P(GP) = 0.916^{+0.01}_{-0.01} \]
Multiple Giant Planet Systems

Kevin Schlaufman
6 October 2015
Multiple Giant Planet Systems

Kevin Schlaufman
6 October 2015

Period [days]
Bayes' Theorem

\[P(GP|HJ) = \frac{P(HJ|GP)P(GP)}{P(HJ|GP)P(GP) + P(HJ|GP')P(GP')} \]

\[P(GP) = 0.084^{+0.01}_{-0.01} \quad (\text{e.g., Cumming et al. 2008}) \]

\[P(HJ) = 0.012^{+0.004}_{-0.003} \quad (\text{e.g., Wright et al. 2012}) \]

\[P(GP') = 1 - P(GP) \]

\[= 0.916^{+0.01}_{-0.01} \]

\[P(HJ|GP) = \frac{4}{139} \]

\[= 0.027^{+0.02}_{-0.01} \]
Bayes' Theorem

\[
P(GP|HJ) = \frac{P(HJ|GP)P(GP)}{P(HJ|GP)P(GP) + P(HJ|GP')P(GP')} \]

\[
P(GP) = 0.084^{+0.01}_{-0.01} \text{ (e.g., Cumming et al. 2008)}
\]

\[
P(HJ) = 0.012^{+0.004}_{-0.003} \text{ (e.g., Wright et al. 2012)}
\]

\[
P(GP') = 1 - P(GP)
\]

\[
= 0.916^{+0.01}_{-0.01}
\]

\[
P(HJ|GP) = \frac{4}{139}
\]

\[
= 0.027^{+0.02}_{-0.01}
\]

\[
P(HJ|GP') = \frac{(10 - 3)}{\{836 [1 - P(GP)]\}}
\]

\[
= 0.0087^{+0.004}_{-0.003}
\]
Bayes' Theorem

\[P(GP|HJ) = \frac{P(HJ|GP)P(GP)}{P(HJ|GP)P(GP) + P(HJ|GP')P(GP')} \]

\[P(GP|HJ) = 0.22^{+0.1}_{-0.1} \]
Bayes' Theorem

\[
P(GP|HJ) = \frac{P(HJ|GP)P(GP)}{P(HJ|GP)P(GP) + P(HJ|GP')P(GP')}
\]

\[
P(GP|HJ) = 0.22^{+0.1}_{-0.1}
\]

\[
P(GP) = 0.084^{+0.01}_{-0.01}
\]

Cumming et al. (2008)
Any exterior giant planet
Companion Probability (inside a_{ice})

Kevin Schlaufman
6 October 2015
Companion Probability

Hot Jupiters are not lonely!

Kevin Schlaufman
6 October 2015
<table>
<thead>
<tr>
<th></th>
<th>Spin-orbit misalignment</th>
<th>Binary companion</th>
<th>“Loneliness”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk-driven migration</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planet-planet scattering</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Kozai-Lidov migration</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Yes should be observed

No should not be observed

Kevin Schlaufman
6 October 2015
$\Sigma_{\text{solids}} \propto \text{planet formation efficiency}$
\[\Sigma_{\text{solids}} \propto \text{planet formation efficiency} \]
\[\propto f_{\text{solids}} M_{\text{disk}} \]
\[\text{g cm}^{-2} \]

fraction of mass that is in solid form (dust grains)
Planet Formation

\[\Sigma_{\text{solids}} \propto \text{planet formation efficiency} \]

\[\propto f_{\text{solids}} M_{\text{disk}} \]

\[\propto Z M_\star \]

fraction of mass that is in solid form (dust grains)

mass fraction of metals

Gordon et al. (2003)
Andrews et al. (2013)
What About Other Elements?

The Bulk Earth Big Ten

O 32.4% Fe 28.2% Si 17.2% Mg 15.9% Ni 1.6%
Ca 1.6% Al 1.5% S 0.7% Na 0.2% Ti 0.1%

Allègre et al. (1995)
What About Other Elements?

The Bulk Earth Big Ten

<table>
<thead>
<tr>
<th>Element</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>32.4%</td>
</tr>
<tr>
<td>Fe</td>
<td>28.2%</td>
</tr>
<tr>
<td>Si</td>
<td>17.2%</td>
</tr>
<tr>
<td>Mg</td>
<td>15.9%</td>
</tr>
<tr>
<td>Ni</td>
<td>1.6%</td>
</tr>
<tr>
<td>Ca</td>
<td>1.6%</td>
</tr>
<tr>
<td>Al</td>
<td>1.5%</td>
</tr>
<tr>
<td>S</td>
<td>0.7%</td>
</tr>
<tr>
<td>Na</td>
<td>0.2%</td>
</tr>
<tr>
<td>Ti</td>
<td>0.1%</td>
</tr>
</tbody>
</table>

Brugamyer et al. (2011)
How do these Hot Jupiters Form?

<table>
<thead>
<tr>
<th></th>
<th>Spin-orbit misalignment</th>
<th>Binary companion</th>
<th>“Loneliness”</th>
<th>Sodium abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk-driven migration</td>
<td>No</td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Planet-planet scattering</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Kozai-Lidov migration</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Yes should be observed

No should not be observed

Kevin Schlaufman
6 October 2015
Na 0.2% Dead zone is pushed out
Planet Formation

Kevin Schlaufman
6 October 2015

Na 0.2%

Dead zone moves in
Logistic Regression

\[P(Y) = \frac{1}{1 + e^{-(\beta_0 + \sum \beta_i x_i)}} \]
What About Other Elements?

The Best Model

- Fe: 28.2%
- Si: 17.2%
- Ca: 1.6%
- Na: 0.2%
What About Other Elements?

The Best Model

Fe 28.2%
Si 17.2%
Ca 1.6%
Na 0.2%
What About Other Elements?

The Best Long-Period Model

Fe
28.2%
What About Other Elements?

The Best Long-Period Model

Only giant planets with $P < 100$ days orbit low-sodium stars!

Kevin Schlaufman
6 October 2015
How do these Hot Jupiters Form?

<table>
<thead>
<tr>
<th>Method</th>
<th>Spin-orbit misalignment</th>
<th>Binary companion</th>
<th>“Loneliness”</th>
<th>Sodium abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk-driven migration</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Planet-planet scattering</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Kozai-Lidov migration</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Yes should be observed
No should not be observed
How do these Hot Jupiters Form?

<table>
<thead>
<tr>
<th></th>
<th>Spin-orbit misalignment</th>
<th>Binary companion</th>
<th>“Loneliness”</th>
<th>Sodium abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk-driven migration</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Kozai-Lidov migration</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

These analyses support the disk-driven migration scenario.
What About Other Elements?

Kevin Schlaufman
6 October 2015