

Observations of late-type stars with the Infrared Spatial Interferometer (ISI)

Stellar Interferometry and the ISI

Mid-IR studies of red giant stars and surrounding dust changes over short and long time periods

High spectral resolution studies new digital spectrometer-correlator

> OHP2013 Ed Wishnow wishnow@ssl.berkeley.edu

Infrared spatial interferometer (ISI) scientists, technicians, students

K.S. Abdeli M. Bester A. Betz* K. Blanchard A.A. Chandler J. Cobb J. Chu W.C. Danchi C.G. Degiacomi R. Fulton L.J. Greenhill R.L. Griffith D.D.S. Hale* S. Hoss

M. Johnson* K. Konevsky E.A. Lipman* S. Lockwood B. Lopez W. Mallard T. MacDonald J. McMahon H. Mistry D. Michaud J.D. Monnier* B. Saduolet J. Storey K. Tatebe*

S. Tevousian P.G. Tuthill K. Reichl V. Ravi J. Remy C.S. Ryan J. Shapiro E.C. Sutton* V. Toy B. Walp J. Weiner* R.H. Weitzman E.H. Wishnow

2008 @ Mt. Wilson 1.

and many more...

Grad students get a *

Infrared Spatial Interferometer

World's highest frequency radio telescope interferometer, operates at 27 THz (11 μ m). Heterodyne detection using ¹³C¹⁶O₂ lasers as local oscillators. Geometric delays removed using RF delay lines.

Currently located at Mt. Wilson Observatory, a site noted for very stable seeing.

Two telescopes in operation 1988 First fringes 1989 Third telescope 2003 Closure phase measured 2004

Telescopes designed for transport as a standard semi-trailer

Pfund optical design, 65" f/3.14 parabolic primary, 80" flat mirror

A. Tip-tilt mirror location (mirror not shown)
B. Large Schwarzschild mirror mount
C. Optics table

Demonstration at McMath-Pierce tele. Kitt Peak

Mid-IR (10 μm) interferometry using heterodyne detection. 5.5 m baseline separation between auxiliary siderostats Mike Johnson, Al Betz, Charles Townes Phys. Rev. Lett, 33, 1617, 1974 Atmosphere shown to be stable enough for interference fringes from Mercury.

> Heterodyne spectroscopy of CO2 on Venus and Mars. Non-thermal emission at line center in Martian spectrum Betz et al. Icarus 1977

Spatial Interferon

Interferometer scheme, examples of fringes

Current system, spectrometer taps A1,A2,A3

heterodyne signal to noise

At detector, $E = E_{LO}\cos(w_{LO}t) + E_{S}\cos(w_{s}t) + E_{0}\cos(w_{0}t + \delta)$

E0 is zero-point energy fluctuations, one photon per root bandwidth per time

Power law detector forms product terms; including beat frequency difference (and sum) where $w_0 = w_s$ is the pertinent noise term

S/N heterodyne α sqrt(Δv) just like direct detection however heterodyne detectors have limited b.w. Johnson & Townes 2000 Optics Comm, 179, 183

ISI array configurations and moving telescopes

ISI site. Teles. 1,2,3 are shown. Cement pads for longest baselines EW are A,B 85m. Longest NS baseline 3,C ~60m

mid-IR deconvolution image complex dust shells (Kervella et al. 2011)

K band deconvolution image extended atmosphere, photosphere diam 43.7 mas (Kervella et al. 2009

features (Haubois et al. 2009)

(Chiavassa et al. 2010).

Stellar variations over time

Betelgeuse visibility variations

Mira diameter changes over a stellar luminosity period

Bester et al. 1996

Weiner et al. 2003

W Hydrae change in visibility and intensity dist.

At 104 pc, a 47--65 mas change in radius over a year gives a velocity of 9 km/s

Zhao-Geisler et al., 2011, 11 um, measure FDD radius=45 mas. Approx. match to this dust shell.

Comparison of mid-IR to radio observations

VLA A config 43 GHz, 7 mm Opacity due to H- free-free Radio continuum in green Contours are SiO maser

Grey scale is H2O Maser Emission, 22 GHz

R Leo ISI Uniform ellipse fits to visibility

Ellipse 64x62 mas

Radio continuum in green Contours are SiO maser Ellipse 61x39 mas

Reid & Menten, 2007, ApJ, 671, 2068

Using Phase Closure: Evolution of dust surrounding stars

Long term studies: variations of α Her

Tatebe et al. "Observation of a Burst of High-Velocity Dust from α Herculis,"

2007, ApJ, 658, 103. From 92 to 93, about 75 km/sec

Betelgeuse 11 um UD size over 17 years

Black pts. Townes, Wishnow, Hale & Walp, 2009, ApJ, 697, L127 Green pts. 10.03, 11.04, 11.15 μ m from Perrin et al., 2007, A&A, 474, 599 Red pts. Ravi et al. 2011, ApJ, 740

Ohnaka plots K band meas over same period w/ 43 mas diameter 2011, A&A, 529

3 telescone measurements of Retelacuse

Series of theoretical images H band covering 3 years, Chiavassa et al., A&A, 506, 1351, 2009

O Ceti, uniform disk fits to visibilities on-off spectral line

Previous ISI Spectroscopic-interferometry RF analog system

VY Cma NH3 forms at ~40R*

IRC +10206 NH3 forms at ~20 R* SiH3 forming at ~80R*

Monnier et al. 2000 ApJ, 453, 868

Weiner et al. 2003, SPIE, 4838, 172

T Lep, VLTI, 1.4-1.9 $\mu m,$ Le Bouquin et al. 2009 A&A L

Spectral range covered, OH & H2O lines of interest

ISI ¹³CO₂ laser lines

Previous ISI Spectroscopic-interferometry RF analog system

Monnier et al. 2000 ApJ, 453, 868

VY Cma NH3 forms at ~40R*

IRC +10206 NH3 forms at ~20 R* SiH3 forming at ~80R*

Simulation of αOri OH black H2O green Band covered red

FPGA digital spectrometer-correlator

3 GHz BW, 64 channel Resolution of 600,000 47 MHz per channel Doppler width HWHM for H_2O at 1000 K is 72 MHz

6 Gsamp/sec using interleaved ADCs
128 pt FFTs every 22 ns. Data swapped between
boards for cross-correlation and accumulation.
45000 spectra, every ms.
Collaboration with Mallard, Werthimer, CASPER

Heterodyne spectrometer testing

Laboratory testing, measuring OCS 4 Torr, 14 cm cell

frequency MHz from LO

Lab tests of correlator performance

Inject full band noise at measured levels

Meas w/ ADC and calc. autocorrelation, XF Model Roach processing Measure w/ correlator

Fit slope of correlated power for channels Plot response of system

3 uncorrelated RF noise sources ~-8 dBm—3 "lasers" applied to 3 independent detectors Lasers noise sources are combined with small RF correlated noise source ~-26 dBm Correlated noise source modulated at: 1MHz+193Hz, 1MHz+107Hz, 1MHz. 10 sec of data Correlated RF source is recovered at the appropriate audio frequencies: 86, 107, 93 Hz

DARPA program to image geo-synchronous satellites

Interferometry of geo satellites 10 cm resolution @ 36000 km ~3 nrad ~ 0.6 mas, Mv=11 Many samples in UV plane Telescopes w/ /AO linked with optical fibers Move baselines in 5 min Conduct meas. at Starfire in NM

ISI Vibration tests/Optical wavefront tests

Dave Jurasevich APOD 2008 Dec 03