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How not to solve the full problem!

Φ Φ0= + φA ×

measured unknown unknownknown

Find an operator K so that:

K ϕ = K ϕo + K A φ
K ϕ = K ϕo

K is the kernel of A
K ϕ are called kernel-phases

Martinache, 2010, ApJ, 724, 464
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Closure-phase: a special case of Kernel

Φ(1-2) = Φ(1-2)0 + (Φ1-Φ2)
Φ(2-3) = Φ(2-3)0 + (Φ2-Φ3)
Φ(3-1) = Φ(3-1)0 + (Φ3-Φ1)

Jennison, 1958, MNRAS, 118, 276 Kraus & Ireland, 2012, ApJ, 745, 5

This is very relevant to 
the extrasolar planet 
direct detection game
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Data analysis

1. Build a instrument model => A
2. Find the Kernel of A: K

PHARO P3K
α Oph (Ks)

3. Fourier Transform each image
4. Extract phase ϕ

5. Multiply K ϕ: you are done!

Additionally:
- statistics
- model the data (e.g. binary)
- determine contrast limits

http://code.google.com/p/pysco/
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First ground based Ker-phase detection

- Separation:       136.1 +/- 3 mas
- Position Angle:  274.6 +/- 2 deg
- Contrast:           23.6 +/- 4

Data, courtesy of S. Hinkley

Martinache, 2013, 221st AAS conference

Hinkley et al, 2011, ApJ, 726, 104
Wednesday, October 23, 2013
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Re-analysis of NICMOS I data

Martinache, 2010, ApJ, 724, 464

Data @ 1.9 μm (λ/D=150 mas)

A ~10:1 contrast companion to a nearby M-
dwarf identified with milli-arc-second 
precision at 0.5 λ/D

Separation: 140 mas
Contrast: 2.4:1

Pope et al, 2013, ApJ, 767, 110

Separation: 64 mas
Contrast: 2.2:1

Original survey:
Reid et al, 2006, 2008

Revisit ~ 80 brown dwarfs 
observed with HST/NIC1 in 
the F110W and F170M filters

- Doubled the fraction of 
known L-dwarf binary 
systems
- Improved astrometry x10

Grant HST-AR-12849.01-A
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Phase Errors in Diffraction-Limited Imaging 5

Fig. 3.— The effect of photon-noise on Kernel-phase detections,

based on a simulated photon-limited image with 106 photons taken

with the unobstructed Keck telescope in the Lp filter. The de-

creased number of photons far from the PSF core means that

Kernel-phases sensitive to these spatial locations have smaller er-

rors, increasing the achievable contrast. This contrast increase

agonalized by the finite-dimensional spectral theorem:

ST ·D · S = CK = Ko ·C ·KT
o . (21)

The matrix S is then a unitary matrix which allows
us to construct a set of statistically independent kernel
phases based on a new kernel-phase operator KS :

θS = KS · Φ = S ·Ko · Φ. (22)

As an example of the utility of this approach, I have
simulated the effects of photon-noise on Kernel-phase
contrast limits, as shown in Figure 3. The contrast
standard deviation was estimated by first estimating the
standard deviation of each Kernel-phase (i.e. neglect-
ing covariances), forming a vector σθ, then computing
the contrast error using standard formulae for weighted
averages:

mθ =K ·mΦ (23)

σ2
c =1/Σ

m2
θ

σ2
θ

(24)

Here mΦ is the model phase divided by the contrast in
the high-conrast limit, e.g. for a 100:1 brightness ratio
companion, the phase would be approximated well by
0.01mΦ.

3.2. Closure-phase Correlations in Aperture-Masking
Interferometry

One of the more confusing aspects of aperture-masking
data analysis is knowing what to do with a linearly de-
pendent set of closure-phases. Simply choosing an arbi-
trary independent set of closure-phases for the purpose
of modelling is not possible without a full consideration

of the covariance matrix. If one considers only the sim-
plest forms of closure-phase errors, namely that due to
readout-noise, then the problem of modelling the covari-
ance matrix is not difficult. However, there are many
other kinds of errors that can cause correlations between
closure-phase errors.
Previous work has either gone to great lengths to diag-

onalize the measured covariance matrix of closure-phase
(e.g. Kraus et al. 2008) or has made an approximate scal-
ing of fitting errors to account for the closure-phase cor-
relations (e.g. Hinkley et al. 2011). The difficulty in any
approach based on real data is that the sample covari-
ance matrix must be modelled, and can not in general
be modelled from the data. The reason for this is that
where there are fewer data frames taken than indepen-
dent closure-phases, the sample covariance matrix is nec-
essarily singular.
These difficulties are all avoided if rather than consid-

ering closure-phases as a primary observable, the linear
combinations that make the kernel-phases are seen as the
primary observables. This has added benefits of being
able to extend the aperture-mask technique to consid-
ering baselines within each sub-aperture (consequently
extending the usable field of view) and using the same
language for all adaptive optics image analysis that is
independent of pupil-plane phase to first order.

4. CALIBRATION STRATEGIES

4.1. Nearest Neighbour Calibration

The simplest calibration technique is to subtract the
kernel-phases from a calibrator observed closest to the
target in time or space. A small extension to this tech-
nique (Evans et al. 2012, e.g.), is to use the average of sev-
eral calibrators observed nearby in time, rejecting outlier
calibrator observations. Outliers are most easily rejected
by looking for calibrators that when used to calibrate the
target, give spuriously large closure-phases. For Nc cal-
ibrators, this amounts to calibrator weightings {ak}Nc

k=1
where each ak is either 0 or 1/Nu, with Nu the number of
calibrators used. There are however, several weaknesses
to this technique:

1. With small numbers of calibrator observations, it is
difficult to avoid subjectivity in the choice to reject
particular calibrators.

2. For particularly noisy calibrator observations and
small systematic kernel phases, this process only
adds noise.

3. All calibrators are weighted evenly, when the op-
timal weighting of individual calibrators may even
be negative.

The third point may not be obvious, and is illustrated
in Figure 4. Whenever calibrators are all on one side
of the calibrator in some space, then optimal calibra-
tion may extrapolate past the position of the calibrators
to the target. This space may be real (such as zenith
distance which produces non-zero kernel phases due to
dispersion) or a one dimensional parameterisation of a
hidden variable describing a variable aberration. This
approach is similar to the potentially negative weight-
ing of astrometric reference stars in precision astrometry
(Lazorenko 2006).

Contrast detection performance?

Martinache, 2010, ApJ, 724, 464 Ireland, 2013, MNRAS, 433, 1718

Orthogonal kernel-phases
De-correlated signals, but not 

necessarily de-correlated noises
Statistically independent kernel-phases

Taking into account data covariance translates 
into improved contrast detection limits
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Eigen-phases for wavefront sensing

Φ = ΦO + A.φ φ = A-1 . (ϕ-ϕo)

For wavefront sensing purposes, need to 
maximize the number of non-singular values of A.

Introduce some asymmetry in the pupil 
suffices in making the matrix invertible.

Eigen modes of the PSF Fourier transform

Martinache, 2013, PASP, 125, 422

Limitation: restricted to initial Strehl ~ 50 %.

Application for now restricted to the non-
common path error calibration in XAO 
systems, but can be extended.
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Focal plane based wavefront sensing

Martinache, 2013, PASP, 125, 422

Because it is a focal plane based sensing 
technique, sensitivity is set by the diffraction limit. 
Performance is particularly good for the low order 
modes... good for small IWA coronagraphy.
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- Very low impact - high payoff
- Asymmetric masks (at two different azimuths) in a pupil wheel after 
the SCExAO DM inside the instrument.
- Preliminary experimental result shows that the sensor works.
- Ongoing work toward a close-loop system for the non-common 
path error calibration on SCExAO.
- Close-loop on-sky demonstration?

Quick lab test (SCExAO)

SCExAO pupil wheel

http://www.frantzmartinache.com/subaru/02projects/03kerphi/02wfs/02wfs.html
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http://www.frantzmartinache.com/subaru/02projects/03kerphi/02wfs/02wfs.html
http://www.frantzmartinache.com/subaru/02projects/03kerphi/02wfs/02wfs.html


Interferometric imaging with 
rich aperture

Example of super-resolution image with Keck @ 2.3 μm
Using NRM-interferometry (λ/D = 45 mas).

Tuthill et al, 1999, Nature, 398, 487

With a 30-meter aperture, interferometric imaging on an ELT 
offers an incredible opportunity to obtain very high resolution 
NIR images of complex sources.

Beam size
NRM geometry: Golay 12

This sort of imaging relies on non-
redundant masks and is therefore 
compatible with even seeing limited 
observations.

But with good AO, non-redundancy 
is no longer a strict requirement...

Golay, 1971, JOSA, 61, 272
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interferometric pupil for imaging

G12

Full

Ring

Golay 12 Full Ring

nA 12 27 15

nUV 66 108 108

nK 55 49 85

% info 51% 45% 79%

http://www.frantzmartinache.com/subaru/02projects/03kerphi/01imaging/01imaging.html

Kernel-phase allows to go 
beyond the rules of Golay 
and offer better solutions 
for the imaging of complex 

sources

Martinache, 2013, in prep

The Ring pupil gives the same uv-
coverage, but recovers a higher 

fraction of the phase information.
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The ELT ring - interferometer

492 segments
972 spatial frequencies
726 kernel-phases (75 %)
Max redundancy: 462
Mean redundancy: 124

78 segments used
972 spatial frequencies
933 kernel-phases (96 %)
Max redundancy: 26
Mean redundancy: 3

Martinache, 2012, SPIE, 8445, 04
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Image reconstruction experiments

Full 
pupil

Ring 
pupil

Imaging reconstruction algorithm based on Ker-phase χ2 minimization only.

With enough d.o.f in the model, the problem quickly becomes degenerate. 
Visibilities and/or regularization (e.g. entropy) are required.

=> Need to learn how to do interferometric imaging
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Enough information for direct inversion?

One “difficulty” is that Ker-phases are abstract 
quantities (even more so than closure-phases).

Option: Properties of data histogram

However, in doing:

K ϕ = K ϕo + K A φ
K ϕ = K ϕo

with a well designed array > 95 % of the phase 
information is preserved: a pseudo inverse K-1 
does not sound that silly anymore.

ϕo’ = K-1 K ϕ

For quick look applications, and/or to give a 
first input to an imaging package?
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Conclusions
- Kernel-phase is a generalization of the idea of closure-phase.
- Works for arbitrary apertures, even highly redundant if Strehl is high.

BUT:

Can handle slightly under-sampled data.
May be able to interpolate saturated regions of image?
Multiple λ increases the range of the technique (cf. dispersed fringe trackers)

- How to push toward higher contrast detection limit? 
Need to look for kernels in the context of coronagraphy and/or nulling.
My guess: gray coronagraphs and gray nullers

- Learn and use the image reconstruction tricks used by real interferometrists!

Bridges the gap between conventional imaging and interferometric imaging. Unlike 
what most astronomers think, a big telescope (“think ELT!”) is really a rich 
aperture interferometer, with a not necessarily optimized overall pupil geometry.

- First applications are:
   - HST NICMOS data in the near IR
   - L- and M-band AO data
   - H- and K-band XAO data

With the following constraints:
   - well sampled data
   - non-saturated data
   - data with well-corrected AO
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Kernel or closure phase?
4 Ireland, M.J.

Fig. 2.— The effect of RMS pupil-plane phase errors of 1 radian (left), 0.7 radians (centre) and 0.3 radians (right) on raw aperture-masking
Fourier phase (black dot-dashed), full-pupil Kernel-phase (blue) and aperture-masking closure-phase (red) scaled as described in the text.
Kernel-phase techniques always have an advantage over using the raw Fourier phase information. In low Strehl regimes, aperture-masking
has an advantage, and in the high Strehl regime, kernel-phase is in principle superior.

rather than direct computation of an inverse as in Equa-
tion 19, but this method suffices for relatively small num-
ber of bad pixels. Although this algorithm is very quick
(the matrix B+ is pre-computed), the bad pixel correc-
tion Equation 18 does have to be applied for every frame,
with the computed values b subtracted off each frame.
It can also be used to correct for saturated pixels at the
core of a PSF.

2.6. Photon and Background Noise

Where the fringe visibility is V , the total number of
photons collected in an interferogram is Np, the number
of background photons Nb and the number of holes in the
aperture mask Nh, the closure-phase error due to photon
(shot) noise is:

σ(φcp,photon) =
Nh

NpV

�
1.5(Np +Nb). (20)

The factor of
√
1.5 includes a factor of

√
3 due to pho-

ton noise from three independent baselines making up
the closure-phase, as well as a factor of

�
1/2 due to the

shot noise power at any non-zero spatial frequency being
split equally between the real and imaginary parts.

3. CLOSURE-PHASE CORRELATIONS

Thus far, the analysis presented has largely been aimed
at individual closure- or kernel- phases. For closure-
phases in particular, a great number of closure-phases
are measured. As described in Kulkarni (1989), these
phases may be linearly independent in the case of very
low signal-to-noise per exposure when the bispectrum is
averaged, but in the high signal-to-noise limit consid-
ered here, with M non-redundant sub-apertures, there
are M(M − 1)(M − 2)/6 closure-phases but only (M −
1)(M − 2)/2 linearly independent closure-phases. A re-
dundant aperture has even more linear dependence of

the bispectrum phases. The effect of this correlation be-
tween closure-phases has been often taken into account
in an ad-hoc way. For example, in Hinkley et al. (2011),
a standard non-linear least squares fitting method was
used to fit to all available closure-phases, and the final
errors simply scaled by the square root of the ratio of the
total number of closure-phases to the number of linearly-
independent closure-phases.
Of course, there are many different ways to form a

linearly independent set of closure-phases, or indeed a
linearly independent set of linear combinations of closure-
phases. Martinache (2010) suggested that kernel phases
should be constructed so that only orthonormal linear
combinations of Fourier phase are considered. However,
this does not guarantee statistical independence. In the
simplest case of a centrally-concentrated image limited
by photon-noise, the spatial concentration of the image
variance means that neighbouring Fourier components
have highly correlated phase errors. This amounts to
a contrast loss when considering n-sigma excursions of
kernel-phase, as like aperture-masking, the kernel-phase
technique has a nearly flat contrast limit curve beyond
separations of ∼ λ/D. However, standard imaging can
have increasing contrasts as separations increase. This
apparent loss in sensitivity can be regained by properly
considering the correlation between Fourier phases, as
shown below.

3.1. Statistically-Independent Kernel Phase

Following from Section 1.1 we will define the matrix
that transforms the Fourier phase vector Φ to the vector
of kernel-phasesKo. This is an NK by NF matrix, where
NK is the number of Kernel-phases and NF is the num-
ber of Fourier phases. The subscript o indicates that this
matrix produces an orthonormal set of phase linear com-
binations. Given a covariance matrix of Fourier phases
C, the covariance matrix of kernel phases CKcan be di-

Low-Strehl: 
closure-phase 

wins...

Medium-Strehl: 
tie!

High-Strehl: kernel-
phase gives another 
order of magnitude

Ireland, 2013, MNRAS, 433, 1718
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