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Introduction

Context,
there is a need of dedicated image reconstruction algorithms for
polychromatic interferometry,
spatio-spectral correlations put strong constraints for image
reconstruction (SNIFS (Bongard et al. 2011), MUSE (Soulez et al.
2013)),
one of the goal of the POLCA project,

Outlines
a new architecture for the polychromatic “MiRA 3D” algorithm,
example in the GRAVITY case.
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Image reconstruction

goal: estimate 3D intensity distribution I(θn, λ`) of the observed
object
we have (measurements):

interferometric measurements (visibilities, closure. . . ) m,
photometric measurements s,

we know (priors):
positivity,
type of the object −→ regularization function.
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Inverse problem framework

Reconstructed image is the solution of:

x+ = arg min
x∈X

fprior(x)︸ ︷︷ ︸
regularization

s.t. fdata(x|m)︸     ︷︷     ︸
interferometry

≤ η1 and fph(x|s)︸ ︷︷ ︸
photometry

≤ η2

with:
fprior(x) regularization;
fdata(x|m) “interferometric likelihood”;
fph(x|s) “photometric likelihood”;
η1 and η2 tolerance level;
X feasible set e.g. X = {x ∈ RN

+ }
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Interferometric likelihood

Sampling:

xn,` = I(θn, λ`) avec:


λ` wavelength of `þspectral channel
θn angular position of pixel n
Bb projected position of baseline b

Direct model:

mp,b,` =
∑

n
Hp,b,n,` xn,` + ep,b,` in brief: m = H · x + e

with:

Hp,b,n,` =

 + cos(θ>n ·Bb/λ`) for p = 1 (real part)

− sin(θ>n ·Bb/λ`) for p = 2 (imaginary part)

Interferometric likelihood term (assuming Gaussian statistics for
the errors)

fdata(x|m) =
1
2

(H · x −m)> ·W · (H · x −m) with: W = Cov(e)−1
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Regularization term: structured sparsity

GRAVITY object of interest: point-like sources (e.g. stellar cluster,
galactic center, ...);
=⇒ our priors are that the object is spatially sparse but not
spectrally sparse
following Fornasier and Rauhut (2008) and Soulez et al. (2011) we
propose to use a structured norm:

fprior(x) =
∑

n

[∑
`

x2
n,`

] 1
2 √∑

` x2
n,` is the `2 norm of spectrum at nth pixel

exemple avec 3 pixels × 3 longueurs d’onde:

λ
−
→

1 0 0
0 1 0
0 0 1
θ −→

fprior(x) = 3

λ
−
→

0 1 0
0 1 0
0 0 1
θ −→

1 +
√

2 ' 2.41
λ
−
→

0 1 0
0 1 0
0 1 0
θ −→
√

3 ' 1.73
the cost is minimal when the chromatic emission is grouped at the
same position;
convex but non derivable function regularization function.
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The image reconstruction problem

x+ = arg min
x∈X

fprior(x)︸ ︷︷ ︸
regularization

s.t. fdata(x|m)︸     ︷︷     ︸
interferometry

≤ η1 and fph(x|s)︸ ︷︷ ︸
photometry

≤ η2

is convex but

non linear,

non derivable,

→ difficult optimization
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Double “splitting”

Problem can be split in three sub-problems using 2 set of auxiliary
variables:

x+ = arg min
x

µ fprior(z) + fdata(y|m) + fph(x|s) s.t.


y = H · x ,
x = z ,
z ≥ 0 .

y: complex visibilities,

x: 3D intensity distribution,

z: 3D intensity distribution.

m fdata(y|m) y y = H · x

fph(x|s)s
x x = z z fprior(z)

sub-pb 1
sub-pb 3

sub-pb 2

Constraints applied using augmented Lagrangian
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Sub-problem 1

sub-pb 1

m fdata(y|m) y y = H · x

fph(x|s)s
x x = z z fprior(z)

sub-pb 3
sub-pb 2

sub-problem 1 solution:

y+ = arg min
y

fdata(y|m) +
ρ1

2

∥∥∥y − ỹ
∥∥∥2

2

= prox(1/ρ1) fdata
(̃y) (Moreau proximal mapping operator)

ỹ = H · x + u/ρ1,

separable on few measurements,
if m are measured complex visibilities
fdata(y|m) = 1

2 (y −m)> ·W · (y −m)
separable in 2 × 2 systems (independent complex measurements),
analytic solution.

9 / 16
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Sub-problem 2

sub-pb 1
sub-pb 3

sub-pb 2

m fdata(y|m) y y = H · x

fph(x|s)s
x x = z z fprior(z)

sub-problem 2 solution:

x+ = arg min
x

fph(x) +
ρ1

2

∥∥∥∥H · x − ˜̃y∥∥∥∥2

2
+
ρ2

2

∥∥∥x − x̃
∥∥∥2

2

with ˜̃y = H · x − u/ρ1 and x̃ = z − v/ρ2,

fph(x) =
∥∥∥∑k xk − s

∥∥∥2
Ws

,

H · x approximated by non uniform FFT (Keiner et al. 2009),

x+ solution of quadratic problem: convex,

iteratively solved using conjugate gradient.

10 / 16
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Sub-problem 3

sub-pb 1
sub-pb 3

m fdata(y|m) y y = H · x

fph(x|s)s
x x = z z fprior(z)

sub-pb 2

sub-problem 3:

z+ = arg min
z≥0

µ fprior(z) +
ρ2

2

∥∥∥z − z̃
∥∥∥2

2

= prox(µ/ρ2) fprior
(̃z)

with z̃ = x + v/ρ2,
separable
fprior is non differentiable,
but proximal operator prox(µ/ρ2) fprior

(̃z) have a closed form solution:

z+n,` =


(
1 − 1/βn

)
max

(
0, z̃n,`

)
if βn > 1

0 else

with: βn = (ρ2/µ)
√∑

` max(0, z̃n,`) . 11 / 16
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ADMM: Alternating Direction of Multipliers Method

ADMM optimization procedure (Boyd et al. 2010):

choose µ, ρ1 et ρ2,

initial imagex(t=0),

y(t=0) = H · x(t=0) and z(t=0) = x(t=0),

u = −∂fdata(y) and v = −∂fph(x) +H> · y
repeat:

1 z(t+1) = proxfprior
(̃z),

2 solve x(t+1) = arg min fph(x(t)) + ρ1
2

∥∥∥∥H · x(t) − ˜̃y∥∥∥∥2

2
+

ρ2
2

∥∥∥x(t) − x̃
∥∥∥2

2
,

3 y(t+1) = proxffdata
(̃y),

4 update Lagrange multipliers v and u,
5 t = t + 1

until some convergence.
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Simulation

Data simulated by GRAVITY
consortium

6 black bodies from 2000° to
15000°,

240 spectral channels from
1.95 µm to 2.45 µm,

good (u, v) coverage (42
baselines),

10080 measurements (complex
visibility),

very good SNR.

(u, v) coverage.

13 / 16
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Results

Sub-problem 1: solving 10080
linear systems of size 2 × 2,
Sub-problem 2:

fph(x) = ‖H · x − s‖2Ws
where

s = 1 (normalization),
quadratic problem,
solved iteratively.

Sub-problem 3:
proximal operator of

fprior(z) =
∑

n

√∑
` z2

n,`

analytic solution,
separable: Npixels small
problems. Reconstruction (spectrally integrated,

axis are in mas).
Positionning errors ≤ 0.1 mas

(λ/Bmax ∼ 4 mas).
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Reconstructed spectra

Normalized spectra (in black) and theoretical spectra (in red) of the 6 stars.
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Conclusion

Sources detection in polychromatic interferometry

a non linear problem solved globally using structured sparsity priors,

shows the leverage given by spectral dimension in image
reconstruction algorithms,

Double “splitting” framework

One hard problem split in three simpler problems,

very flexible: boxes can be easily changed,

changing priors or measurement types −→ changing one box.

Perspectives

in the GRAVITY case, compare to greedy methods (CLEAN like),

use other kind of measurements (VIS2, closures. . . )

use other priors,

self-calibration.
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