

The Navy Precision Optical Interferometer

Current Status, Future Upgrades

Dr. Gerard van Belle,Lowell Observatory
Dr. Don Hutter, USNO-FS; Dr. Tom Armstrong, NRL
September 24th, 2013

The NPOI Team

- USNO
 - Paul Shankland
 - Don Hutter
 - Jim Benson
 - Mike DiVittorio
 - Bob Zavala
- AZ Embedded Systems
 - Tim Buschmann
 - David Allen
- Lowell Observatory
 - Jeff Hall
 - Gerard van Belle
 - Bill DeGroff
 - Lisa Foley
 - Jason Sanborn
 - Susan Strosahl
 - Steve Winchester
 - Ron Winner

- Richard Bevilacqua
- Sergio Restaino
- Tom Armstrong
- Jonathan Andrews
- Ellyn Baines
- Jim Clark
- Henrique Schmitt
- Chris Wilcox
- TSU
 - Matt Muterspaugh
 - Mike Williamson
- Vanderbilt
 - Victor Garcia
- NMT
 - Anders Jorgensen

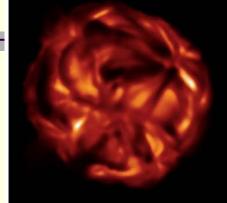
Basics

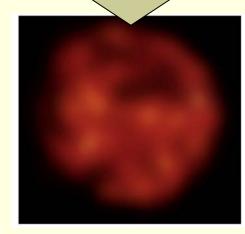
- NPOI = Navy Precision Optical Interferometer
 - Major funding by Oceanographer of the Navy and Office of Naval Research
 - Additional instrument funding from National Science Foundation
- NPOI is collaboration b/w USNO, NRL & Lowell Observatory
- Lowell is both a science partner, and a contractor to USNO (infrastructure & ops) & NRL (site projects)

NPOI Current Capabilities

- Simultaneous, group-delay fringe tracking on multiple baselines (6 stations)
- Bandpass 550-850nm in 16 channels (R ~ 30-50)
- Single-baseline fringe tracking to $m_{V} = 6.7$
- Multi-baseline fringe tracking w/closure phase to m_{V} ~ 6.0
- Wide-angle astrometry with 5-10mas accuracy on bright stars
- Operated by one observer, scheduled ~355 nights/year

Facility Upgrades in Progress


- Completion of 6-station "imaging" (portable) siderostat array:
 - New enclosures for star acquisition & tip-tilt optics installed for 5 of 6 stations
 - New domes installed for 5 of 6 imaging siderostats
 - 2 more imaging stations to be commissioned in 2013
 - Long baselines to 432 m & 'compact' configurations
 - To complete: integration of Long Delay Lines
- Control systems upgrades:
 - PC-based siderostat controllers for astrometric & imaging stations (4 installed; 5 more this year)
 - PC-based Fast Delay Line (FDL) control system:
 - Delivered to site & tested with 2 FDLs thus far
 - Significant performance improvement



'Classic' Instrument Upgrade in Progress

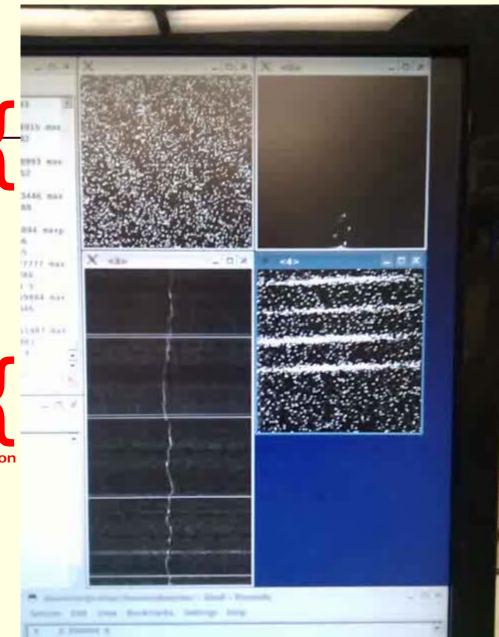
- New Fringe Engine read-out electronics
 - FPGA hardware finished; firmware & software under development
 - 32 → 96 channels, 30^{sec} → unlimited integration time
 - Flexible FTK algorithms
- Baseline bootstrapping, coherent integration
- Recently approved as a 3-year NSF-funded upgrade program

Freytag simulation (Chiavassa+ 2010)

6×6 pixel imaging (NPOI 2014?)

VISION Instrument Commissioning in Progress

- VISION NSF project: PI Matthew Muterspaugh (TSU)
 - Visible "MIRC++" combiner for NPOI
- Improvement
 - Visibility precision ~10×
 - No delay nonlinearities, APD afterpulsing
 - Full 6-way combination, flexible spectral resolution (R~50, 2000)
 - Modern equipment, CCD
- Commissioning ongoing
 - First fringes: Oct 2012
 - Four-way combination: Jan 2013
 - Grad student (V. Garcia) now on-site for full-time commissioning work



Fringes in Image Plane (barely seen above the noise)

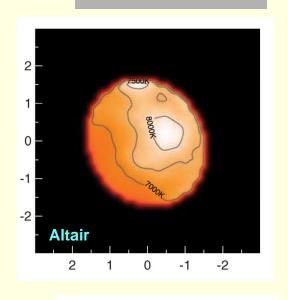
'Waterfall' plot for single tracking baseline (left-right motion due to residual atmospheric piston)

FFT of Fringes

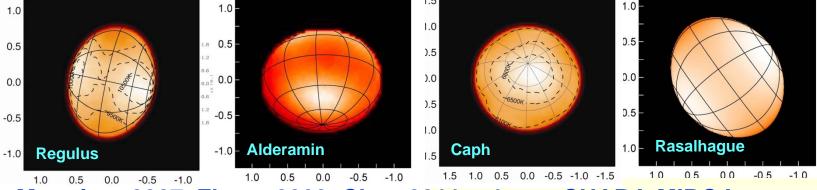
Spatial Frequency versus Delay

- Each 'Hot Pixel' row is one baseline of six
- Bottom pixel is DC term
- Some baselines very hard to see because fringe contrast is low (for long baselines)
- Left-right motion due to atmospheric piston
- Pixels should line up in a single vertical line but don't due to uncorrected static piston offsets

Photometry for each of 4 telescopes

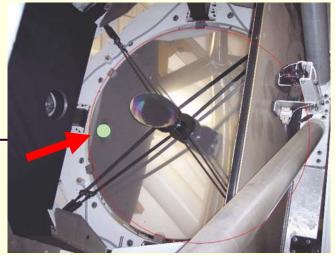

Four simultaneous telescopes

=


Six baselines (and 3 independent closure phases)

Stars are Photogenic

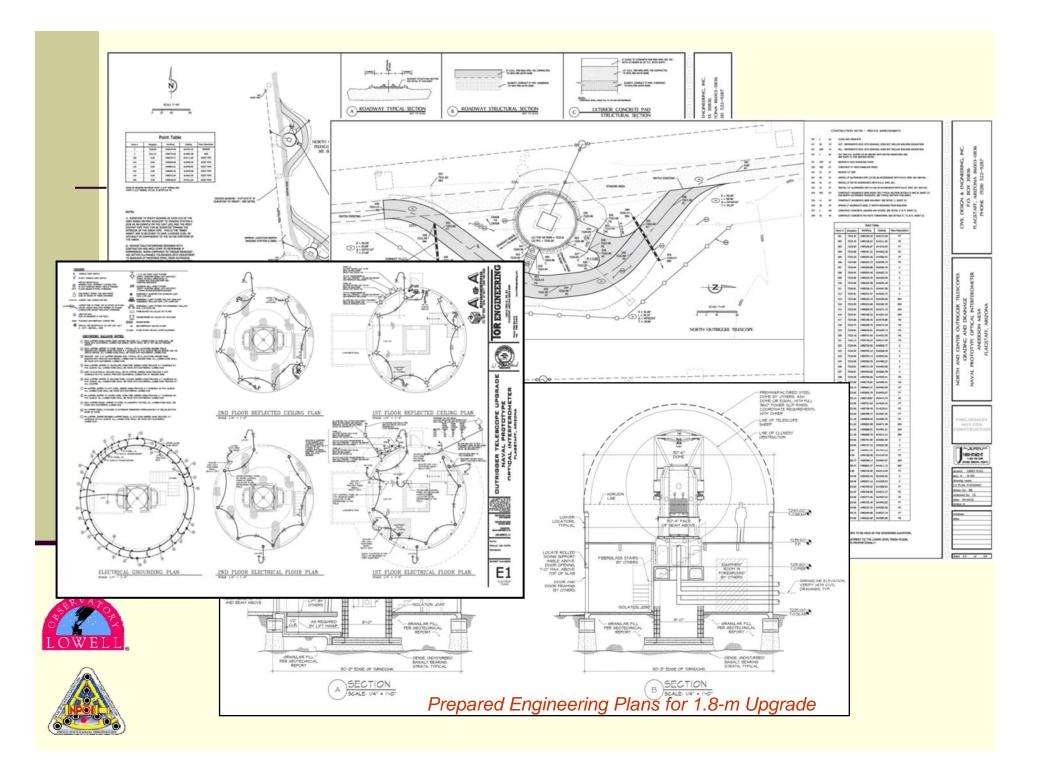
- Progression over the past 10 years
 - 1. Simple modeling (PTI)
 - 2. Detection of surface features (NPOI)
 - 3. Direct imaging (CHARA, shown)
- Already starting to see some surprises
 - Stellar structure not as expected from simple models
- Next step: time-series images → movies

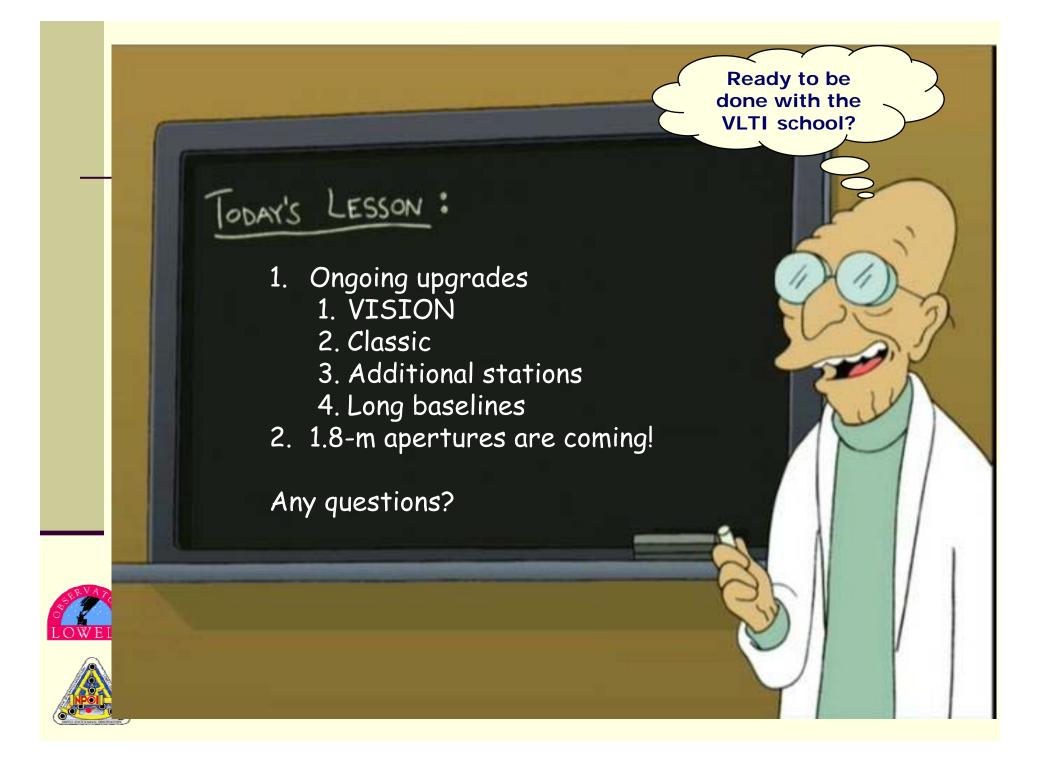


Monnier+ 2007, Zhao+ 2009, Che+ 2011: 4-way CHARA-MIRC Images

1.8-m Upgrade

- Four 1.8-m telescope were built by NASA for the Keck Interferometer
 - Not installed for non-technical reasons
 - 'Over-engineered' for narrow-angle astrometry
 - Good for NPOI wide-angle astrometry mission
 - [One on loan to Mt. Stromlo]
- 'Gifted' to USNO from CARA in 2010
- Final engineering plan in 2011
- USFS site permit in 2012




Relative size of current 5" siderostats and 1.8-m telescope

