"Improving the performances of current optical interferometers & futurs designs" International colloquium at Haute-Provence Observatory, France 23-27 September 2013

OHANA

Julien Woillez Guy Perrin, Olivier Lai, François Reynaud

To do what?

- Inner structure of YSOs
- Galacitc Centers

• 2 x 300 m silicate fibers J and H band (IRCOM, Limoges)

Contrast ~50% for full band, 70% for 100 nm band-path, single polarization.

- 2 x 300 m silicate fibers J and H band (IRCOM, Limoges)
 - Contrast ~50% for full band, 70% for 100 nm band-path, single polarization, transmission 95%.

• 2 x 300 m fluoride glass fibers K band (Le Verre Fluoré)

- Contrast ~90% for full band, two polarizations, transmission 60%.
- Temperature dependence. 0.4 Vormalized Intensity 1.5 0.2 Phase (rad) C -0.2 0.5 -0.4 4600 4200 4400 4800 5000 0 Wave Number (cm⁻¹) -40 -20 0 20 40 -60 60 Optical Path Difference (µm) Fig. 3. Spectral phase of laboratory interferogram. Fig. 2. Laboratory interferogram. Standard single-mode fibre Filter Polarizer Fiber Coupler Detector Beam combine **Compensation of the** Delay line C2 T2 C4 group delay difference $\Delta \tau$ Toward detecto by means of an air delay line ve launch into the sl Spectral anal BS ental setup: for temporal analysis, we apply a ± 150 V voltage to the PZT modulator and for spectral analysis we apply T1 e PZT. Filter -Thermal source NICMOS Temperature control enclosure Fig. 1. Experimental setup. C1, C2, C3, C4: dispersion compensation fibers. T1 and T2: 300 m long transmission fibers. C3 and C4

are used for polarization control. BS, beam splitter.

- 2 x 300 m silicate fibers J and H band (IRCOM, Limoges)
 - Contrast ~50% for full band, 70% for 100 nm band-path, single polarization, transmission 95%.

• 2 x 300 m fluoride glass fibers K band (Le Verre Fluoré)

- Contrast ~90% for full band, two polarizations, transmission 60%.
- Temperature dependence. 0.4 0.2 Phase (rad) C Ammann MPC -0.2 -0.4 4600 4400 4800 5000 4200 Wave Number (cm⁻¹) 20 40 60 ence (µm) rogram. 2 1.1 +3 degC Intensity 1.5 Vormalized Comp Delay line C2 group del by means o 0.5 for tempor 0 -60 -40 -20 0 20 40 60 Thermal source NICMOS Optical Path Difference (µm) Temperature control enclosure

Fig. 1. Experimental setup. C1, C2, C3, C4: dispersion compensation fibers. T1 and T2: 300 m long transmission fibers. C3 and C4 are used for polarization control. BS, beam splitter.

we apply

Injection tests

• Performed on CFHT, WMKO, and Gemini

Injection tests

First demonstration on Keck Interferometer

Injection at AO focus

 Routing through cable trays, azimuth cable wraps

First demonstration on Keck Interferometer

Identical path to Fringe Tracker

And it worked on 18 June 2005!

- Some vibrations in the injection
- Lots of piston vibrations
- Some dispersion (from AO dichroics)
- Overall transmission $0.5 \sim 1.0\%$ (KI = 1.1%)

Fig. 1. Fringes on the star 107 Herculis. (Top) The lowfrequency intensity fluctuations are due to vibrations. (Bottom) The signals were high-pass filtered to remove the low-frequency vibrations.

Meanwhile, for Canada-France-Hawaii - Gemini

Delay lines, installed inside CFHT

- Physical length: 14 m

Continuous delay translation table

- Central carriage in multiple pass (x8)
- Continuous delay with double pass translation stage
- Correct for 160 m baseline (CFHT-Gemini)

Central carriage

Meanwhile, for Canada-France-Hawaii - Gemini

A multi-coaxial beam combiner, developed at Obs. Paris, tested on IOTA

Injection arc

- 2002.08: CFHT
- 2002.12: WMKO
- 2003.07: Gemini

• Beam combiner arc

- 2003.06: First IOTA run
- 2004.10: Second IOTA run
- 2006.06: Third IOTA run (last IOTA run)

• Keck Interferometer arc

- 2004.08: Installation
- 2004.12.01: Weathered out
- 2005.01.31: Weathered out
- 2005.06.17: Full night, cloudy, but first fringes on 17 Her (K=4.6), AO dichroic dispersion
- 2006.05.08: No fringes, polarizations were crossed
- 2007.11.19: Good injection, then lost to high humidity
- 2009.03.07: Weathered out (staring Jean Cavé)
- 2009.08.09: Failed to inject in fibers (staring Mr Perrin)

Maybe not too wise to go for CFHT-Gemini right away...

How can we validate our interferometer independently?

2x Celestron 8" (CPC 800 GPS XLT)

F-ratio adaptation to fiber mode Tip/tilt servo with visible camera and voice coil Control loop and acquisition from PC Baril+ 2010SPIE.7734E..72B

MZ 600 Hz J Telescope Off 12 Juin 2010

Mach-Zender with 13 m fibers

Measuring a baseline

Optical (not so) Long Baseline Interferometry

Antares, J band, late June 2010

Followed by Antares vs Arcturus on 1 m baseline...

20

There is a future

From OHANA IKI to many telescopes for imaging AGILIS: Agile Guided Interferometer for Long baseline Imaging Synthesis

Fibers are being prepared for coherent transport somewhere else

Somewhere in Michigan...

Injection arc

- 2002.08: CFHT
- 2002.12: WMKO
- 2003.07: Gemini

• Beam combiner arc

- 2003.06: First IOTA run
- 2004.10: Second IOTA run
- 2006.06: Third IOTA run (last IOTA run)

Keck Interferometer arc

- 2004.08: Installation
- 2004.12.01: Weathered out
- 2005.01.31: Weathered out
- 2005.06.17: Full night, cloudy, but first fringes on 17 Her (K=4.6), AO dichroic dispersion
- 2006.05.08: No fringes, polarizations were crossed
- 2007.11.19: Lost to high humidity
- 2009.03.07: Weathered out (staring Jean Cavé)
- 2009.08.09: Failed to inject in fibers (staring Mr Perrin)

OHANA IKI arc

- 2007.04: Delay line installation
- 2008.04~07: CFHT Gemini baseline measurement [5 mm] (internship: B. Lenoir)
- 2009.04~05: Delay line commissioning
- 2009.04~07: IKI telescope injection tests (internship: F. Bouchacourt & G. Zahariade)
- 2010.04~07: IKI fringes (internship: Y. Dong)