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Timeline:

July 2006: Project started with NSF grant

April 2008: First light for on-axis fringe tracking
December 2009: First light for off-axis fringe tracking

July 2012: First light for LGS AO + IF
August 2012: Sweet dreams!
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On-axis fringe tracking (1/3)
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On-axis fringe tracking (1/3)

Spectro-astrometric precision

« Shown to follow photon noise
model for bright objects

e Achieved 1.7 mrad ~ 1.45 uas

Demonstrated limiting magnitude

- K=7.38

» Upgrading the Fringe Tracker vs

Spectrometer to 90/10: K=9.4

Woillez+ 2012PASP..124...51W

+ Raw
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—— Photon noise model
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FiG. 8.—Average differential-phase standard deviation vs. total photon count.
The self-calibrated average differential phase follows the overlaid photon-noise
model, whereas the raw average differential phase shows a slightly higher level
of noise, but without any noise floor, implying that longer data collection inter-
vals should yield precisions better than the demonstrated +1.7 mrad or
+1.45 pas differential astrometry. See the electronic edition of the PASP for
a color version of this figure.



On-axis fringe tracking (1/3)

Observation of Be star 48 Lib

« Bry detection, with 8V2 and d® effects
=> Rotating disk

* Pfund serie
=> One-armed over-density

48 Lib:
disk emission zones
(face-on view)

disk continuum:
gFWHM = 1 65 mas

stellar continuum:
unresolved

Pfog: V/R = 1.0
Vieax =+230km/s
<PChift> = 0.9 mas

<BFWHM>= 1.7 mas

Keplerian disk: |v(R)|

x R-05

Bry: V/R=1.8

Upeak

=+150 km/s
< PCMft>=2.1 mas
<@FWHM5 = 1.6 mas

rotation of \
disk and prograde

one-armed over-density

Ha (not measured)

one-armed, precessing
over-density defines V/R

(in the plane

Pott+ 2010ApJ...721..802P

Calibrated SPR data: 48 Lib
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Figure 1. Top: mean calibrated flux ratio between 48 Lib and the continuum
divided calibrator. The red solid line marks a linear continuum fit. The different
line profiles of Bry- and P f-emission lines are clearly visible. Center: mean
calibrated V2 of 48 Lib showing that both the NIR continuum and the
recombination line emission are spatially resolved by the interferometer. A
linear continuum (red line) was fitted to the line-free regions. Bottom: calibrated
differential phase data. The red line marks the zero phase. All plots show the rest
wavelength of the target. The vertical dotted lines indicate the rest wavelength
of the recombination lines. It is apparent that all lines show the same slope at
the line center, as expected for disk emission.



On-axis fringe tracking (1/3)

Differential phase [rad]

m |
| l|| 'llu ’ | i!ll‘.

o |

0.2 il: | I ,\“ ! | "H ‘,Jy\’ H

0 | 1 1 1 1
2.05 2.10 2.15 2.20 2.25 2.30 2.35
Wavelength [um]

Non detection at 0.05 rad, 17.5 nm, 42 uas, in 45 minutes on NGC 4151



Off-axis fringe tracking (2/3)

Off-axis field selector development

OAP1

AO Tip/Tilt Star

Dual Star Module (DSM)”””’” (LGS mode)

» At the focus of the AO system
» Off-axis acquisition 3 ~ 30 arcsec
« Beams to on-axis and off-axis coudé trains

3 ~ 30 arcsec

@ AO Guide Star
Science Reference (NGS mode)
Target Target



Off-axis fringe tracking (2/3)

Full non-common path metrology Telescope accelerometers
« Dimensioned for astrometry * For full OPD coverage but...
« Zero dOPD with non-stabilized A = 1319 nm e ...missing M2 mirror!

 Sidereal dOPD with stabilized HeNe 633 nm
* Very low cross-talk (with spatial masks)
« OPD and dOPD
Reference corner cubes
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Off-axis fringe tracking (2/3)
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The TT mirror is not in a pupil,

PS and SS have different impact on it
TT motion causes differential internal
OPD fluctuations.

Version AByag

The TT mirror is not in a pupil, the
primary space conjugate of the Narrow
Angle Baseline changes with the TT
motion, which induces a differential
internal OPD fluctuation.

DM
_~~ Adaptive Optics (AO)




Off-axis fringe tracking (2/3)

January 22, 2011: K=11.5
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Off-axis fringe tracking (2/3)

To get rid of as many unwanted instrumental disturbances as possible...

2011-10-10 T 10:51:51 ~ 10:53:54
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Off-axis fringe tracking (2/3)

To get rid of as many unwanted instrumental disturbances as possible...
to make the bright fringe tracker close the loop...
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Off-axis fringe tracking (2/3)

To get rid of as many unwanted instrumental disturbances as possible...
to make the bright fringe tracker close the loop...

and provide a meaningful correction for the secondary target.
2011-10-10T 10:51:51 ~ 10:53:55

K=15.5 K=13.0 K=10.5 »= Primary vs Secondary

correlations on bright pairs,
compared to faint observations.
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Off-axis fringe tracking (2/3)

Optical path difference [um]
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This was around the end of 2011, at T-6 months...
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Off-axis fringe tracking (2/3)

R=13.8 tip tilt star 15.7" away
(USNO-A2.0 0600-28577051)

Two laser guide stars on galactic center
Recovered ideal Strehl ratio on GCIRS 7
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Astrometry (3/3)

Woillez & Lacour 2013ApJ...764..109W
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Figure 9. Illustrative unification of WAB, NAB, and IMB.
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The Keck Interferometer
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ABSTRACT. The Keck Interferometer (KI) combined the two 10 m W. M. Keck Observatory telescopes on
Mauna Kea, Hawaii, as a long-baseline near- and mid-infrared interferometer. Funded by NASA, it operated from
2001 until 2012. KI used adaptive optics on the two Keck telescopes to correct the individual wavefronts, as well as
active fringe tracking in all modes for path-length control, including the implementation of cophasing to provide long
coherent integration times. KI implemented high sensitivity fringe-visibility measurements at H (1.6 pm),
K (2.2 ym), and L (3.8 um) bands, and nulling measurements at N band (10 pm), which were used to address
a broad range of science topics. Supporting these capabilities was an extensive interferometer infrastructure and
unique instrumentation, including some additional functionality added as part of the NSF-funded ASTRA program.
This paper provides an overview of the instrument architecture and some of the key design and implementation de-
cisions, as well as a description of all of the key elements and their configuration at the end of the project. The objective
is to provide a view of KI as an integrated system, and to provide adequate technical detail to assess the implementa-
tion. Included is a discussion of the operational aspects of the system, as well as of the achieved system performance.
Finally, details on V2 calibration in the presence of detector nonlinearities as applied in the data pipeline are provided.

Online material: color figures
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Sweet dreams!




