

Integrated optics at mid-IR wavelengths

L. Labadie⁽¹⁾, R. Thomson⁽²⁾, G. Martin⁽³⁾, N.C. Anheier⁽⁴⁾, G. Madden⁽²⁾, P. Krause⁽¹⁾, P. Kern⁽³⁾

- (1) I. Physics Institute, University of Cologne, Germany
- (2) Heriot-Watt University, Edinburgh, UK
- (3) IPAG, Grenoble
- (4) Pacific Northwest Laboratories, USA

- Originally, the idea of mid-infrared integrated optics came out in the context of the Darwin mission
- The integrated optics concept was having its first success with IONIC/IOTA
- Could an IO approach be applicable for nulling at longer wavelengths ? This question was timeline..

- Back in 2002/2003: no mid-infrared photonics
- Only the FLUOR team pushed it up to the L' band
- > The TISIS experiment on IOTA (Mennesson et al. 1999)

The goal ? Starting from scratch and develop an achromatic, very lowloss, 6-telescope beam combiner, single-mode between 4-20 microns

Evolving context

- Changing context for "space interferometry route"
- But both Darwin and TPF-I triggered new developments in the field of mid-infrared photonics
 - mid-IR single-mode fibers (Ksendzov 2007, 2008)
 - mid-IR integrated optics (Labadie 2006, Vigreux 2007)
- Growing field of astrophotonics (AWG & SWIFT spectrometers, IO combiner, pupil remapping arrays)
- Keep and expand the technological know-how on the mid-IR topic

The near-infrared astronomical IO

- Relies on established technological platform that originates from the telecom field
- e.g. the PIONEER H-band beam combiner based on silica-onsilicon technology (Benisty et al. 2009)

Good matching with SM fibers (comparable ∆n and core dimensions)

The mid-infrared astronomical IO

No single "universal" mid-IR technological platform

→ Dedicated R&T (Design, try-and-test approach)

 \rightarrow Different IR materials with different transmission windows

Silicon-on-Insulator (SOI): exploit transparency of silica (SiO2) up to 3.1 μm. *Multimode* waveguides produced with losses 0.7dB/cm (Mashanovic et al. 2011).

- Silicon-on-Sapphire (SOS): guiding up to 7 μm, with single-mode losses <2dB/cm (Li et al. 2011).
- Etched telluride waveguides: guiding up to 20 μm, single-mode with losses ~4dB/cm (Vigreux et al. 2011)

Ultrafast laser inscription

CW laser writing

- Lighter infrastructure compared to classical waveguide etching
- Insert symmetry in the coupling process by having the waveguides embedded
- \blacktriangleright Control of the Δ n by mean of CW power level or pulsed energy

Lucas Labadie

Proof-of-concept

CW laser writing

Ultrafast laser inscription

Labadie, L. et al., A&A (2011)

Rodenas, A. et al., Opt. Lett. (2012)

Lucas Labadie

Data results

Labadie, L. et al., A&A (2011) Rodenas, A. et al., Opt. Lett. (2012) Labadie, L. et al., SPIE proc. (2013)

	2D & 2-telescope Y junction	3D & 3-telescope combiner
Material	As2Se3/As2S3	Research glass GCIS
Transparency	<12 μm	<12 μm
Δn	0.04	<0.012
Modal behavior	SM for λ>8.6μm	SM for λ>9μm
Interferometric contrast	0.981+/-0.001	99.53% (mean) <i>,</i> 99.89% (peak)
Propagation losses	0.6dB/cm (channel WG)	~1-2dB/cm (function)
White-light fringes	No	Yes (9μm<λ<11μ)

Optimization

Optimization needs to follow proof of concept (=improving the waveguides quality)

Checking splitting ratio of all the beam combiners

Optimization

Controlling the spectral coverage of glasses

Commercial glass (GLS)

Research glass

 \succ

Optimization

- Controlling the spectral coverage of glasses
 - Research glass

mid-IR IO outside interferometry

Heterodyne spectroscopy

Tunable Heterodyne Infrared Spectrometer (PI Guido Sonnabend)

The LiNbO₃ active functions

Active Directionnal Couplers: On-Chip Amplitude Tuning @ 3.39um

Conclusion

- We have demonstrated a number of proof-of-concepts for mid-IR integrated optics
- Progress towards a well-thought optimization of such devices, primarily for ground-based interferometry
 - Accurate estimate of the losses (propagation and bend losses)
 - Specify one (or two maximum) priority band
 - "Side" aspects: polarization, coatings, maximizing coupling, bend losses
 - Prototyping an end-to-end interferometric component (singlemode 3-4mu fibers are commercially available!)
- Explore on punctual basis opportunity for applications outside interferometry