

Processing of Polychromatic Interferometric Data for Astrophysics : the POLCA project

Michel Tallon & POLCA consortium

CRAL, Lyon, France IPAG, Grenoble, France Lagrange, Nice, France LESIA, Paris, France

Michel Tallon & POLCA consortium

Improving optical interferometers - OHP- Sept 23-27, 2013

- Short presentation of **POLCA** project
- Polychromatic data
 - Analysis of (polychromatic) interferometric data
 - Visibilities for image reconstruction
 - → Ferréol Soulez's talk
- 3-D (x,y, λ) model fitting
- 3-D (x,y, λ) image reconstruction
 - specific approach \rightarrow Jacques Kluska's talk
 - general approach \rightarrow Ferréol Soulez's talk

Summary of POLCA / 1

- People (26) from 4 French labs
 - *CRAL (Lyon)*: Paul Berlioz-Arthaud, Ferréol Soulez, <u>Michel Tallon</u>, Isabelle Tallon-Bosc, Éric Thiébaut
 - *IPAG (Grenoble)*: Gilles Duvert, Jacques Kluska, Sylvain Lafrasse, Bernard Lazareff, Jean-Baptiste Lebouquin, <u>Fabien Malbet</u>, Guillaume Mella
 - Lagrange (Nice): Philippe Bério, Olivier Chesneau, <u>André Ferrari</u>, David Mary, Florentin Millour, Denis Mourard, Romain Petrov, Antony Schutz, Céline Theys, Martin Vannier
 - LESIA (Paris): Pierre Kervella, Sylvestre Lacour, <u>Thibaut Paumard</u>, Guy Perrin
- Ethnography :
 - Experienced observers in interferometry
 - Experts in signal processing
 - Experts on instruments (and their data)
 - AMBER, MIDI, VEGA, PIONIER, GRAVITY, MATISSE
- => Nobody understands everything
- Supported by ANR (French National Research Agency)
 - 4 years (2011 2015)
 - 400 k€
 - ~ 6 FTE during the 4 years

Summary of POLCA / 2

- Facts
 - Data now contain a lot of information along the wavelength (dispersed fringes + spectrum)
 - Needs of better tools to make the most of these data
 - Particularly, how to exploit differential visibilities ?
 - Need to make experts in interferometry and in signal processing work together
 - Need to work on real data
- Outputs
 - New methods and new algorithms for polychromatic data
 - 3-D image reconstruction
 - model fitting
 - image reconstruction + model-fitting
 - Better knowledge of data
 - requirements for better data
 - => better interferometers and instruments
 - Advance in astrophysics (as much as possible)
 - => work with real data

Selection of suitable data

Field of unresolved stars of

- Selection of a limited set of data with chromatic features ٠
 - in the objects _
 - in the data
 - Simulated data in some cases (GRAVITY)

Statistics of polychromatic data

Current processings (image reconstruction, model fitting, ...) assume uncorrelated gaussian data...

Minimization of:
$$\chi^2(\mathbf{x}) = \sum_{i=1}^{N_{\text{data}}} \left(\frac{d_i - m_i(\mathbf{x})}{\sigma_i}\right)^2$$

Michel Tallon & POLCA consortium

Improving optical interferometers - OHP- Sept 23-27, 2013

Appearance of independence of data

• model is outside the error bars (1 sigma) for ~32% of the data

• ~32% of data out of the range [- σ , σ]

Beware : only one realization here !

Michel Tallon & POLCA consortium

Improving optical interferometers — OHP— Sept 23-27, 2013

Data with local correlations: 70%

- correlation coefficient:
 - 70% with adjacent
 - -25% with next point
 - 0% farther away
- Similar effect as spectral correlations in real data
- alignments of successive points
- less dispersion of residuals

Beware : only one realization !

Data with global correlations: 70%

- 70% correlation between any points
- Similar effect as noise on normalization (incoherent flux, calibrator)
- less dispersion of residuals
- bias may appear

Beware : only one realization !

Examples on real data / 1

Michel Tallon & POLCA consortium

Improving optical interferometers — OHP— Sept 23-27, 2013

Examples on real data / 2

Michel Tallon & POLCA consortium

Improving optical interferometers - OHP- Sept 23-27, 2013

- => Need for a study of statistics of
- accurate error bars is necessary for reliable interferometry

- On-going work done at Lagrange (Nice)
 - Antony Schutz, Martin Vannier, André Ferrari, David Mary, Florentin Millour, Romain Petrov
- Rationale
 - Analyze assumptions on visibility statistics (distribution, correlation)
 - Need to adapt data processing ?
 - Need to improve data reduction ?
 - Other
 - effective connection between experts from interferometry and signal processing
 - understand data reduction necessities and practices
- Data
 - Currently squared (differential) visibilities from AMBER
 - Work in progress for data from PIONIER and VEGA

Statistical analysis / dataset

	Auxiliary Telescopes + Me							
			Auxiliary Tele					
	V	\checkmark	v					
Dataset name	UT-MR-NoFT	AT-MR-FT	AT-LR-FT					
Date	2011/01/16	2012/02/22	2012/10/09					
Nb of files	2	40	37					
Time Span	0.2 h	5.7 h	3.5 h					
Nb frames per file	970	37	970					
Nb λ per frame	400	400	13					
integration time (s)	0.19	2.0	0.026					
Spectral Res.	1500	1500	35					
Spectral Band	Κ	Κ	Κ					
Fringe Tracker	OFF	ON	ON					
Seeing (arcsec) (min., avg., max.)	0.9, 1.0, 1.0	0.6, 0.9, 1.4	0.5,0.6,0.8,					

Unit Telescopes + Medium Resolution + No Fringe Tracker

Auxiliary Telescopes + Medium Resolution + Fringe Tracker

Auxiliary Telescopes + Low Resolution + Fringe Tracker

- AMBER data
- calibrators
- with and without fringe tracker
- UT / AT
- various time exposure
- # frames / # spectral channels

Improving optical interferometers HP— Sept 23-27, 2013

 $\Delta V^2(\lambda_i) = \frac{V^2(\lambda_i)}{V_{\text{Ref}}^2(\lambda_i)}, \text{ with } V_{\text{Ref}}^2(\lambda_i) = \frac{1}{n_\lambda - 1} \sum_{i=1, j \neq i}^{\infty} V^2(\lambda_j)$

- ΔV^2 corrected from visibility loss
- Rescaling: $\Delta V^2 \rightarrow \Delta V^2_R$
 - rescaled to the mean value of visibility with 20% selection
- Variance increased

Histogram of ΔV^2 for the 3

- 100% selected
- Unimodal
- Mean close to one

sibility

Statistical analysis / comparison of standard deviations

- Example of standard deviation per exposure file for visibility and differential visibility
 - results averaged over all files and bases
 - divided by the squared root of the number of frames

Actord

Statistical analysis / comparison of correlations

• Examples of matrices of the temporal correlation coefficients between spectral channels for dataset UT-MT-NoFT, averaged over observation files and over the three baselines.

Statistical analysis / probability distribution of data ?

- Compatibility of empirical distribution of data with standard distributions ?
 - $-\chi^2$ goodness-to-fit test with 5% probability of false alarm
- Tested standard distributions
 - Normal (generally assumed)
 - Cauchy (ratio of 2 normal random variable)
 - Student (able to fit both Normal and Cauchy and between)
 - Log Normal (used in previous work)

Normal Log Normal Cauchy

Rejection rate in % for AT-MR-FT dataset

-		Spectral Analysis			Temporal analysis				
	AT-MR-FT/piston	N	t	Log N	С	\mathcal{N}	t	Log N	С
100% selected → 20% selected → differential Vis. rescaled→	V_{100}^2	59	29	53	100	34	11	74	12
	V_{20}^2	59	22	49	100	1	0	1	4
	$\Delta V_{ m R}^2$	59	19	53	99	22	1	29	5

AT-MR-FT/no piston	N	t	Log N	С	N	t	Log N	С
V_{100}^{2}	88	12	51	99	34	11	70	18
V_{20}^{2}	83	5	52	100	11	0	12	10
$\Delta V_{ m R}^2$	88	12	51	99	15	1	16	16

Statistical analysis / summary

- Student distribution is more suitable than Normal, Cauchy and Log Normal distributions
 - True for visibility and differential visibility
- Visibility versus differential visibility
 - Visibility:
 - Visibility loss and piston effect depend on the selection threshold (empirical tuned)
 - Can be multi-modal (depends on selection threshold)
 - Correlated (depends on selection threshold)
 - Rescaled differential visibility: alternative estimator of visibility ?
 - No selection (nothing to tune)
 - Larger number of frames (here, x 5), since no selection
 - Lower standard deviation, since larger number of frames
 - Less correlated
 - Best distribution fitting score (Student)
- Next
 - data from VEGA, PIONIER
 - differential phase, closure phase

Example of possible effect for model fitting

- Simulated data for uniform disks (6 different diameters) with *real noise*.
 - real noise is closer to Student law
- Fit of this data assuming either gaussian or Student statistics
 - better accuracy with Student statistics : relative MSE twice smaller.

- Current polychromatic data are not convenient
 - closure phase and powerspectrum not linear (lower SNR, loss of information)
 - differential phase very helpful : how to use it in a global approach ?
- Image reconstruction = inverse problem
 - Compute (synthetic) data *knowing* the object (direct model) and priors
 - Compare with real data
 - Find the model of the object that gives the best match
- Attempt: allow other unknowns that can help in the inverse problem
 - We want to keep linearity => complex visibilities
 - We want to accumulate frames => fringe tracking in post-processing (multiple wavelengths) —
 - We don't want to spoil the statistics => account for statistics (and keep all frames) _
 - Reject optimally (i.e. robustly) the information we don't need. _
 - Keep remaining unknowns that cannot be rejected \Rightarrow ~"self-calibration"
- \rightarrow Ferréol Soulez's talk

3-D (x,y, λ) model fitting

One example of polychromatic "difficulties"

Michel Tallon & POLCA consortium

Improving optical interferometers — OHP— Sept 23-27, 2013

Need of a model of the spectrograph

- Data on P Cygni, from VEGA
 - Width of differential visibility difficult to explain in H_{α} line
 - Spectrum is affected by detector artifacts (saturation, ...)
- P Cyg spectrum is quite well modeled by radiative transfer codes
 ⇒ make use of the theoretical spectrum for modeling the object "as seen by VEGA"

Need of a model of the spectrograph

Polychromatic image reconstruction

- Specific approach \rightarrow Jacques Kluska's talk
- General approach \rightarrow Ferréol Soulez's talk
- Other work done in Nice using sparse representations

Polychromatic image reconstruction : specific approach

• The image is the addition of components with weights that depend on the wavelength:

$$i(\boldsymbol{x},\lambda) = \sum_{k=1}^{n} w_k(\lambda) i_k(\boldsymbol{x})$$

- $i_k(\mathbf{x})$ obtained with usual image reconstruction or model fitting

• \rightarrow Jacques Kluska's talk

- Make use of the strong relationship between the wavelengths
 - Reconstruction of a 3D cube (x,y,λ)
 - The object shape depends continuously on the wavelength (with exceptions)
- Needs
 - A 3D cube ! => need to be fast enough (i.e. converge easily)
 - Account for the spectrum complexity (lines, dynamics, ...)
- → Ferréol Soulez's talk

- POLCA = Processing of Polychromatic Interferometric Data for Astrophysics
 - Focus on real data (AMBER, MIDI, VEGA, PIONIER)
 - simulated data if not possible (GRAVITY)
 - Improve model of data statistics
 - Formalize measurements by current interferometers
 - 3-D (x,y, λ) image reconstruction
 - 3-D (x,y, λ) model fitting (and coupling with image reconstruction)
- Evolutions of the project
 - initially starting from reduced data, but now look for possible more appropriate estimate using wavelength dependency (phase difference, ...)
- Improving the performances of interferometers ?
 - Do not forget to improve signal processing

