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Abstract. We describe a new approach to implement multi-wavelength
image reconstruction in the case where the observed scene is a collection of
point-like sources. We show the gain in image quality (both spatially and
spectrally) achieved by globally taking into account all the data instead of
dealing with independent spectral slices. This is achieved thanks to a regu-
larization which favors spatial sparsity and spectral grouping of the sources.
Since the objective function is not differentiable, we had to develop a spe-
cialized optimization algorithm.

1. Introduction

Optical interferometers provide multiple wavelength measurements. In order to
fully exploit the spectral and spatial resolution of these instruments, new algo-
rithms for image reconstruction have to be developed. Early attempts to deal with
multi-chromatic interferometric data have consisted in recovering a gray image of
the object or independent monochromatic images in some spectral bandwidths.
The main challenge is now to recover the full 3-D (spatio-spectral) brightness
distribution of the astronomical target given all the available data.

2. Direct model

The complex visibility measured at the wavelength ¢ and for the baseline b can
be discomposed in a real my o and a imaginary part my, 01 that can be modeled
as:

Mpp,c R Z HycnoXn- (1)
n

where x, 4 is the value of the pixel n in the spectral channel £. The operator H
is separable along the spectral dimension:

Hyone = +cos(8) - By/\), (2)

Hyine = — sin(0,) - By/ M), (3)

where By is the bth baseline, and 0,, the position of the n'" pixel. As the problem

size can be hudge, we use a fast approximation of H based on the non uniform
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fast Fourier transform (Keiner et al. 2009). In this approximation H has the
following structure:
H=R-F-S (4)

where F is the discrete Fourier transform computed by the mean of the fast
Fourier transform, R interpolate the gridded spatial frequencies computed by the
DFET to the observed spatial frequencies. S is an operator that precompensates
the convolution by the interpolation kernel used in R.

3. Inverse problem framework

To solve this problem of hyperspectral image reconstruction, we follow an inverse
problem approach where the image is estimated according to the measurements,
its noise and some priors about the observed object. It can be written as a
constrained optimization problem:

+ . fdata(w) S 771
xT = argmin fyior () s.C. 5
B0 foir (@) {Pw:l (5)

where

— x € X is the vector of parameters in the image domain. It is angularly
sampled by 8,, € A and spectraly sampled in Ay € L

— X is the subspace of R M)+ where lie the positive object parameters x,
— m € RCd(m) ig the vector of complex visibility,

— fdata() is the likelihood term ensuring the agreement between parameters
x and measurements m.

— P-x = 1 is the spatial normalization constraint with the spatial integration
operator P,

— forior(x) is a regularization function that enforces some priors.

3.1 Likelihood

The likelihood or data fidelity function fyata(@) is built according to the direct
model and the noise statistics. If the noise is Gaussian, this function is a weighted
least square function:

fooa(@) = (H-z—y)' C' (H-z-y), (6)

where C is the noise covariance matrix. Complex visibilities are mutually inde-
pendant and only real and complex parts of the same visibility are correlated.
Thus, we can write:

faata(®@) = > (Hppg g —mipe) " Cpp (Hope Te — M) | (7)
b,ln

where Cy ¢ is the 2 x 2 covariance matrix associated with the measured complex
visibility myy.



Image reconstruction for polychromatic interferometry 257

3.2 Regularization

In interferometry, the normalization occurring in the visibility estimation process
naturally leads to a strict normalization prior. The parameters space X is then
the subspace where:

>0

mexE{ 2 s 21, (®)

More specifically, the main scientific goal of the VLTI GRAVITY instrument
is to follow stars in the vicinity of the galactic center. At such a distance, those
stars are not resolved by the VLTI baselines and there are only few point-like
sources in the instrument field of view. Hence non-negativity and spatial sparsity
seem to be adapted priors as this will favor having as few as possible bright point-
like sources to explain data. In addition, imposing some spectral continuity while
favoring spatial sparsity, structured sparsity is an very well adapted prior for such
objects. As we have already shown in integral field spectrography (Soulez et al.
2011) or in optical interferometry (Thiébaut et al. 2013), the structured sparsity
prior can be enforced by the mean of mixed norms (Fornasier & Rauhut 2008,
Kowalski 2009). In hyperspectral case, it writes:

o) =3 (30,42 )

with n the spatial index (pixel) and ¢ the spectral channel. The fact that such
a regularization favors spatial sparsity and spectral grouping is a consequence of
the triangular inequality (Fornasier & Rauhut 2008).

4. Algorithm

Figure 1.: Structure of the MiRA3D algorithm

We propose to solve the image reconstruction problem using an Alternating
Direction of Multipliers Method (ADMM) (Boyd et al. 2010). Following ADMM
strategy, we introduce auxiliary variables y and z to split the complexity of the
original problem Eq. (5) which we recast as:

Hx =y,
. T =z,
min prrior(z) + fdata (y)s.t. P-x =1 (10)

z>0,y,2
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Equality constraints can be enforced by means of the augmented Lagrangian
which, for Eq. (10), writes:

Lo(x,y,z,u,v,w) = faata(y) + 1t forior(2)
tul(How—y)+ 5 [H-z -y}
+o7-(@-2)+ 2 e - 2[3,
tw(Pa-1+ 2 Pa-1f,

where u, v and w are Lagrangian parameters associated with the constraints
y=H -z, x =z and P-x = 1 respectively. p; > 0, po > 0 and p3 > 0 are
quadratic weights.

The ADMM consists on minimiz-
ing the augmented lagrangian L,(x,y,z,u,v) in an alternating manner with
respect to each variable «, y and z and then updating Lagrangian multipliers u,
v and w:

Algorithm: Solving the problem (10) using ADMM

Initialization of the object parameters (), Lagrangian parameters w(?), v(©)
and w© and weight p1, po and ps. Then set t = 1 and repeat until convergence:

Sub-pb 1: updating y:

y® = argmin £(z(t1, g, 20D ut=D pt=D 4(t=D)
_ : Pl =]
—arg;nm{fdata(y)Jr 5 Hy Y H2} (12)

with:
g =H. 2t 4 w1 /p (13)
Sub-pb 2: updating z:

Z(t) — arg mlnﬁ(y(t)’ m(t_l), z, u(t_l),v(t_l),w(t_l))

= argzmin{pfprior(z) + % Hz —z® Hz} (14)

with:
30 — =1 4 v(t_l)/pg; (15)
Sub-pb 3: updating x:

x® = argmin L(x, y® 20 =1 =1 w(t_l))
x>0

2 2 ~ 2
=orgmin{ G |12 =50+ G o -0 + 3 2257 }

(16)
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avec:

SO — @ _ =1 (17)
FO — 20 _ 4= /. (18)
BY 21—ty (19)

4: updating multipliers w, v and w:

u® = D 1 (H Lx® y<t>) , (20)
o® = =D 4 <$(t> _ z(t)) . (21)
w® = w1 4 pg (a:(t) - 1) . (22)

This algorithm is illustrated by the schema Fig. 1. It splits the global minimiza-
tion problem (Eq. (5)) in three successive simpler sub-problems Eq. (12), Eq. (14)
and Eq. (16).

4.1 Sub-problem 1:

The sub-problem 1 defined by Eq. (12) is a denoising problem with Gaussian
prior which have an analytical closed form solution. As complex visibilites are
independant it is separable and consist on solving several 2 x 2 linear systems:

-1
u) = (Gt +o1) (ot mue+013)) (23)

4.2 Sub-problem 2

The sub-problem 2 defined by Eq. (14) is a denoising problem under a group
sparsity priors (Thiébaut et al. 2013). For each spectrum, it can be solved
independantly applying its so called “proximity operator” (Combettes & Pesquet
2011):

~\ de . 1 -
prox, ¢(2) & arg min {a f(z)+ s z— z||§} . (24)
z€eRN 2

which is in the case of group sparsity

<1 a ) Zoo if B >
- — = | zZpye 1 a;
prOXa fjoint (Z)nvg = 577, " "

0 else

e N1/2
with 3, & (Zz Zi,z) and o = u/ps.

4.3 Sub problem 3

(25)

The sub-problem 3 defined Eq. (16) is not separable and does not have a closed
form solution. However it is a classical quadratic problem under positivity con-
straint. We solve it by the mean of the VMLMB algorithm (Thiébaut 2002)
that can account for bounds. From the Eckstein-Bertsekas theorem (Eckstein &
Bertsekas 1992), it is not necessary to solve this sub-problem exactly to ensure
global convergence as long as error on z can be absolutely summed. In practice
less than a dozen of iteration is necessary.
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Figure 3.: Reconstructed image (spectraly
Figure 2.: (u,v) coverage integrated)

5. Results

We have tested our method on GRAVITY simulation. It consists on six un-
resolved stars with different spectra observed by the 4 UTs with 240 spectral
channels from 1.95 ym to 2.45 ym and 42 baselines (about 10080 complex visibil-
ities). (u,v) coverage is presented Fig. 2.

We reconstruct an hyperspectral image with 240 spectral channels and 100 x
100 pixels of size 1 x 1 mas. The reconstructed image spectraly integrated in the
K band is shown Fig. 3. The six star are recovered and there is not any false
detection. The shape of reconstructed star is due to the beam and its centroide
indicated its position with an error lower than 0.15mas. The 6 reconstructed
spectra presented in Fig. 4 are very close to the theoretical spectra.
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Figure 4.: Estimated (in black) and theoretical (in red) spectra for the 6 stars.



262 F. Soulez and E. Thiébaut

J. Eckstein and D. Bertsekas. On the Douglas-Rachford splitting method and the
proximal point algorithm for maximal monotone operators. Mathematical
Programming, 55(1):293-318, 1992.

M. Fornasier and H. Rauhut. Recovery algorithms for vector valued data with
joint sparsity constraints. SIAM Journal on Numerical Analysis, 46
(2):577-613, 2008.

J. Keiner, S. Kunis, and D. Potts. Using nfft 3-a software library for various

nonequispaced fast fourier transforms. ACM Transactions on Mathemat-
ical Software (TOMS), 36(4):19, 2009.

M. Kowalski. Sparse regression using mixed norms. Applied and Com-
putational Harmonic Analysis, 27(3):303-324, 2009. ISSN 1063-5203.
doi: 10.1016/j.acha.2009.05.006. URL http://www.sciencedirect.com/
science/article/pii/S1063520309000608.

F. Soulez, E. Thiébaut, S. Bongard, and R. Bacon. Restoration of hyperspectral
astronomical data from integral field spectrograph. In 3rd Workshop on
Hyperspectral Image and Signal Processing (WHISPERS), Lisbon, Portu-
gal, 2011. URL http://core.ieee-whispers.com/.

E. Thiébaut. Optimization issues in blind deconvolution algorithms. In J.-L.
Starck and F. D. Murtagh, editors, Astronomical Data Analysis II, volume
4847, pages 174-183, Bellingham, Washington, 2002. SPIE. doi: 10.1117/
12.461151.

E. Thiébaut, F. Soulez, and L. Denis. Exploiting spatial sparsity for multi-
wavelength imaging in optical interferometry. Journal of the Optical So-
ciety of America A, 30(2):160-170, Feb. 2013.
URL http://hal.archives-ouvertes.fr/hal-00771800.



