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Abstract. The Carlina thinned pupil telescope has a focal unit (“gondola”)
suspended by cables over the primary mirror. To predict the structural be-
havior of the gondola system, a simulation building block of a single cable is
needed. A preloaded cable is a strongly non-linear system and can be mod-
eled either with partial differential equations or non-linear finite elements.
Using the latter, we set up an iteration procedure for determination of the
static cable form and we formulate the necessary second-order differential
equations for such a model. We convert them to a set of first-order differen-
tial equations (an “ABCD”-model). Symmetrical in-plane eigenmodes and
“axial” eigenmodes are the only eigenmodes that play a role in practice for
a taut cable. Using the model and a generic suspension, a parameter study
is made to find the influence of various design parameters. We conclude that
the cable should be as stiff and thick as practically possible with a fairly high
preload. Steel or Aramid are suitable materials. Further, placing the cable
winches on the gondola and not on the ground does not provide significant
advantages. Finally, it seems that use of reaction-wheels and/or reaction-
masses will make the way for more accurate control of the gondola position
under wind load. An adaptive stage with tip/tilt/piston correction for sub-
apertures together with a focus and guiding system for freezing the fringes
must also be studied.

1. Introduction

The planned Carlina telescope (Le Coroller et al. 2012, Dejonghe et al. 2014)
will have a gondola with focal plane optics suspended in a cable net over the
primary mirror. The position of the gondola must be controlled accurately by a
dynamical control system with cable winches. To model this system, a dynamical,
state-space model of a guy wire is needed. We here present such a model and
some test runs with conclusions related to choice of design parameters.
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Most structures can be adequately described by linear models. However,
in some cases non-linear techniques are necessary. Two types of non-linearities
are common: Material and geometric non-linearities. Creeping of steel is a well-
known example of a material non-linearity. Geometric non-linearities arise when
the deformation of a structure is so large that changes of the geometry of the
structure play a significant role for the load path in the structure. A wire is
a geometrically non-linear system because the system geometry changes due to
gravity loads and external forces.

Modeling of suspended cables is difficult but of high interest due to important
applications, such as suspension bridges, wire roof structures, guyed antenna
masts, semi-submersible drilling rigs, and electrical transmission lines.

The problem related to gondola control for the Carlina is that many simula-
tion and control tools are linear, so it is of interest to establish a linear state-space
model of the cable performance. The approach is then to first establish a non-
linear model to determine the operating point of the cable and then a linear
model describing performance around the operating point.

Two types of models can be used to describe cables, either based on par-
tial differential equations (Irvine 1981, Starossek 1994) or on a finite element
representation (Henghold & Russell 1976, Ozdemir 1979, Desai et al. 1988, Tib-
ert 1999, Talvik 2001). In a previous publication (Enmark et al. 2011), a model
based upon partial differential equations was used. We here present a cable model
based upon a finite element approach (largely following Tibert 1999) and draw
some conclusions for the choice of design parameters.

In Section 2, we present the equations for a finite cable element, and in Sec-
tion 3 we show the algorithms for determination of the static form a of suspended
cable. Then, in Section 4, we set up a linear, dynamic model of a cable, valid
for small excursions around the operating point, and in Section 5 we comment
on the nature of the wind loads. Finally, a generic gondola suspension model is
formulated in Section 6 for evaluation of design parameter sensitivity, together
with a concluding discussion in Section 7. Through the paper, we illustrate the
approach by an example of a cable similar to the ones used for the Carlina.

2. Single Element

A finite element model of a cable can be formed as shown in Fig. 1 for a horizontal
wire. The cable is divided into a number of elements and corresponding masses
are assigned to the nodes between the elements. Under the influence of gravity
and preload, the wire assumes a certain form. With modest preloads this is the
well-known catenary, whereas it resembles a parabola, when the preload is high.
Each node has three translational degrees of freedom.

Figure 2 shows part of a finite element model of a wire for the static case.
If the node in B for some reason is displaced from the equilibrium position to
position B’, two different effects together tend to restore equilibrium. Firstly,
elements AB and BC are stretched so in addition to the preload, axial, elastic
forces turn up. Secondly, due to the displacement of node B, the two preload
forces in elements AB and BC change direction, leading to a geometric force
component ∆FB that tends to move the node back from B’ to its equilibrium
position in B. The two effects can be dealt with separately by use of elastic and
geometric stiffness matrices, respectively.
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Figure 1.: Subdivision of a cable into finite elements connected at nodes.
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Figure 2.: Displacing node B to B’ creates a geometric restoring force.

Different cable elements are described in the literature (Gambhir & Barring-
ton De V. Batchelor 1977, Jayaraman & Knudson 1981, Ahmadi-Kashani 1983,
Tibert 1999, Ren et al. 2008). For highly preloaded cables, rectilinear elements
suffice, whereas curved elements are useful for less preloaded cables. Due to the
high preload, simple rectilinear elements (Tibert 1999, Levy & Spillers 2003) can
be used for the Carlina.

A rectilinear cable element in 3D Cartesian space (x, y, z) between nodes
number i and j is shown in Fig. 3. We first wish to form the elastic stiffness
submatrix from which the elastic end node force increments at node i can be
determined by multiplication by a displacement vector for the same node. Letting
nij denote a unit vector directed from node i to node j it can relatively easily be
shown (Levy & Spillers 2003) that the elastic stiffness submatrix, KEi, for node
i is

KEi =
AE

L
× nijn

T
ij

Node j
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zi

DF
yi

DF
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yj

DF
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Figure 3.: An element connecting nodes i and j in 3D space. End point forces in
a global coordinate system are shown.



156 Torben Andersen et al.

where the symbols are defined in Table 1 together with some values used in the
example of this note. The operator “◦T” transposes a matrix. For reasons of
symmetry, the full, elastic stiffness matrix for the element then is

KE =

[

KEi −KEi

−KEi KEi

]

Table 1.: Nomenclature with values used in the example.

Definition Example

Fi Axial force in element i
F Cable preload 1344 N
A Cable cross section 2.69 mm2

E Modulus of elasticity 7.03× 1010N/m2

l Cable chord length 185.8 m
L Length of element 4.61 m
ρ Mass density 1440 kg/m3

θ Cable inclination angle 19o or 0o

g Gravity acceleration 9.81 m/s2

(xi, yi, zi) Coordinates of end point i (0 m, 0 m, 0 m)
(xj, yj, zj) Coordinates of end point j (175.68 m, 0 m, 60.49 m)

or (185.8 m, 0 m, 0 m)

Similarly, the geometric stiffness submatrix for the element at node i can be
formed (Levy & Spillers 2003). It is

KGi =
Fi

L

(

I− nijn
T
ij

)

where I is the identity matrix, Fi the axial force in the element and L the length
of the element. As expected, the geometric stiffness matrix depends on the load
conditions, leading to a nonlinear model. The full, geometric stiffness matrix
then is

KG =

[

KGi −KGi

−KGi KGi

]

and the end node force increments (see Fig. 3) for the element are
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where {∆xi,∆yi,∆zi,∆xj,∆yj,∆zj}T are the node displacements in directions
x, y, and z for nodes i and j with respect to the position at which the stiffness
matrices were evaluated.
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The matrix K = KE + KG is the tangent stiffness matrix that describes
cable element performance in the vicinity of the node locations at which it was
evaluated.

The mass matrix can be formed by simply lumping the mass of the cable to
the two end nodes. The mass matrix for a single element then is

M =
1

2
ALρI

3. Cable Static Form

3.1 Approximate Static Form

A cable fixed in the ends and loaded by gravity is taken as taut if the maximum
gravity deflection of the cable from its chord is less than about 1/8 of the chord
length. Based upon partial differential equations, it is shown by Irvine (1999) that
the static gravity deflection for a taut cable is nearly parabolic. For a horizontal
cable oriented along the x-axis, the gravity deflection is

z = −ρAgl2

2F

(

x− x1
l

(

1− x− x1
l

))

(1)

where x1 is the x-coordinate of the first end point of the cable and F the ten-
sion force in the cable (taken to be uniform over the length of the cable). For
inclined cables, the same expression applies when the gravity vector is scaled
appropriately.

For more complex cable networks one may instead use the force density
method (Schek 1974) which gives a linear set of equations under the assumption
that the force per length unit is known. This is a valid approximation for some
complex structures.

3.2 Iterative Static Solution

The solution to the static problem dealt with above is only approximate. In the
following, an approach for a more exact determination of the static equilibrium
form under the influence of gravity and preload is presented. For this, an iterative
procedure is necessary.

We first combine all degrees of freedom of the cable into a single global
vector. The assumed equilibrium coordinate vector, u, is

u =
{

x1, y1, z1, x2, y2, z2, . . . , x(ne+1), y(ne+1), z(ne+1)

}T

where xi, yi, and zi are the coordinates of node i and ne the number of elements
used. This is the first estimate used for the iteration. A good starting point is
the node locations found in Sect. 3.1 using an approximate tension force. It is
our objective to arrive at a more precise version of this vector. A global vector,
∆u, with the excursions from the equilibrium is defined as

∆u =
{

∆x1,∆y1,∆z1,∆x2,∆y2, . . . ,∆x(ne+1),∆y(ne+1),∆z(ne+1)

}T

where ∆xi, ∆yi, and ∆zi are displacements from the assumed equilibrium for
node i.
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Next, we assemble the global elastic and geometric stiffness matrices, and
the global mass matrix, using the expressions for a single element of Sect. 2., and
we do this for the node locations defined by u. We here denominate the global
elastic matrix by KE and get:

KE =
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Elements not shown are zero. A similar expression holds for the global geometric
stiffness matrix, which we here call KG. The global mass matrix, which we now
call M, simply is

M =
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The stiffness and mass matrices are R
3(ne+1)×3(ne+1), sparse, and symmetrical.

For determination of the equilibrium form by iteration we assume that the
end points are constrained. Later, when the equilibrium form is known, we
will account for displacements of the end points. To constrain the end points,
we remove the first and last three rows and columns from the global stiffness
matrices (Andersen & Enmark 2011) which we then denote K′

E, and K′

G. Also,
for the moment we disregard the degrees of freedom for the end points from the
displacement vectors, which we then call u′ and ∆u′.

We compute the gravity load vector for the inner nodes

f ′g = M′ {gx2, gy2, gz2, . . . , gxne
, gyne

, gzne
}T

where gxi, gyi, and gzi are the components of the i’th gravity vector and f ′g ∈
R
3(ne−1)×1. Obviously other static forces, such as point loads, may also be added

here.
To determine the element forces on the nodes, we determine a vector from

the first node of element i to the second node:

ri = {xi − xi+1, yi − yi+1, zi − zi+1}T

The length of the element is ‖ri‖ and a unit vector with the same orientation is

ni = ri/ ‖ri‖
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The force vector on inner node i (2 ≤ i ≤ ne) is

fi = AE

(‖ri‖ − l0
l0

ni −
‖ri+1‖ − l0

l0
ni+1

)

where l0 is the length of the unloaded element. The global inner force vector
f ′e ∈ R

3(ne−1)×1 then is

f ′e =
{

fx2, fy2, fz2, . . . , fx(ne−1), fy(ne−1), fz(ne−1)

}T

When in equilibrium, f ′g and f ′e will outbalance each other. When not in equilib-
rium, the unbalance is

∆f ′ = f ′g − f ′e

A correction to the estimated inner node coordinates can be found using a com-
bination of the elastic and geometric stiffness matrices:

(

K′

E +K′

G

)

∆u′ = ∆f ′

The equation must be solved for ∆u′. Using the assignment symbol “:=”, the
new estimate for u′ then is:

u′ := u′ +∆u′

with which the iteration can recommence. A stop criterion can be formed by
monitoring the relative error

ǫ =
‖∆f ′‖
∥

∥f ′g
∥

∥

and then interrupt the iteration when ǫ < ǫ0, where ǫ0 is in the range 0.001-
0.1. It is possible to reduce computation time by only recalculating the stiffness
matrices at certain intervals. Near the end of the iteration, the stiffness matrices
only change little. However, for the present application, calculation times are
generally small on multithreaded work stations.

Using the iteration procedure described, as an example, the form of the
cable defined in Table 1 is determined. The model has 40 elements. The cable
is assumed to be horizontal for better illustration. The form depends on the
unloaded length of the cable, which was selected as 184.4883 m (the chord length
is 185.8 m). The sag in the middle was found to be 0.1210 m and the preload
1344 N. Using Irvine’s formula (Irvine 1999) with the same preload of 1344 N a
value of 0.1219 m is obtained, in good agreement with the result from our model.

In the vicinity of the equilibrium form, the cable model may be taken as
linear. The static deflection relative to the equilibrium form for any small static
load may then be determined from the linear equation

(

K′

E +K′

G

)

∆u′ = ∆f ′

As an example, Fig. 4 depicts the incremental form change of the same cable
used in the example above with gravity load and an additional downward force
of 1 N at distance of 139.35 m from the left cable support.
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Figure 4.: Example showing static deflection relative to the equilibrium form due
to a downward force of 1 N at a distance 139.35 m from the left support. The
two deflection curves seem to be straight lines but that is not exactly the case.

4. Cable Dynamics

4.1 Dynamical Finite Element Model

Based on the finite element model formulated in Sect. 2., it is relatively easy to
set up a dynamical model of the cable. The model can be formed for the case
with fixed end points or with free end points. Using the approach described in
Andersen & Enmark (2011), the latter model becomes

M∆ü+E∆u̇+K∆u = ∆f (2)

Here, E is a damping matrix. Using standard solvers, the eigenvalues and eigen-
vectors can be determined (Andersen & Enmark 2011) from

KΨ = MΨΩ2

The columns of Ψ are the eigenvectors, the diagonal matrix Ω2 holds the eigen-
values along the diagonal, and Ω the eigenfrequencies. By replacing M with M′,
K with K′, and ∆u with ∆u′, these equations are also valid for the case where
the end points are constrained. We call the corresponding matrices of Ψ and Ω
for Ψ′ and Ω′.

Using the approach, the eigenmodes and eigenfrequencies for the cable of
the previous example can be determined. There are two types of eigenmodes,
vertical (in-plane) and lateral (out-of-plane), which again can be subdivided into
symmetrical and anti-symmetrical eigenmodes. Figure 5 shows low-order in-plane
eigenmodes determined for a cable with the characteristics shown in Table 1. For
plotting, the eigenmodes have been scaled to a peak displacement of 0.1 m and
are shown superimposed on top of the static deflection curve. Table 2 lists the na-
ture of some more important eigenmodes. High-order eigenmodes are not shown
because they are generally not important for control system design and wind
load studies. Also the model tends to be inaccurate at higher eigenfrequencies.
For studies of the effect of flutter (wind-coupled transverse cable vibrations), a
finite-element model with many elements would be needed to model high-order
eigenmodes accurately.

For the axial eigenmodes, the cable vibrates with a movement along the
“axis” of the cable. These modes resemble that of an air column in an organ pipe
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Figure 5.: Vertical (in-plane) eigenmodes for a cable with the characteristics
shown in Table 1.

Table 2.: Nature of various modes together with participation factors for a longi-
tudinal translation of one end point. Same example as in Fig. 5.

Mode Type Symmetry Eigenfre- Participation
no quency factor

(Hz)

1 Out-of-plane Symmetrical 1.59 0
2 In-plane Symmetrical 1.59 5.63
3 In-plane Anti-symmetrical 3.18 0.4
4 Out-of-plane Anti-symmetrical 3.18 0
5 Out-of-plane Symmetrical 4.76 0
6 In-plane Symmetrical 4.76 1.52
7 In-plane Anti-symmetrical 6.34 0.83
8 Out-of-plane Anti-symmetrical 6.34 0
9 Out-of-plane Symmetrical 7.90 0
10 In-plane Symmetrical 7.90 0.49
13 In-plane Symmetrical 11.0 0.09
17 In-plane Symmetrical 14.0 0.51
25 Axial Symmetrical 18.9 5380
62 Axial Anti-symmetrical 37.8 10700
81 Axial Symmetrical 56.7 16000
82 Axial Anti-symmetrical 75.4 21200
83 Axial Symmetrical 94.1 26200
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closed in both ends or of a fluid oscillating in a tube. From first-order physics, it
is known that the speed of sound, v, in a suspended cable is

v =

√

E

ρ

For our example, the speed of sound is 4.03 × 103 m/s. With the end nodes
constrained there will be resonance, when the period of the oscillation equals the
time it takes for the sound to go from one end of the cable to the other end and
then be reflected back to first end. Considering also higher-order harmonics, the
theoretical eigenfrequencies for axial vibrations then are multipla of the lowest
axial eigenfrequency ν:

ν =
v

2l

For our example, Table 3 lists the axial eigenfrequencies as determined by the
finite element model described above and the speed of sound. There is good
agreement, in particular for the lower eigenfrequencies shown here, which are the
ones of interest.

Table 3.: Comparison of axial mode eigenfrequencies determined by the finite
element model and from speed of sound.

Mode no Eigenfrequency Eigenfrequency
from FE model from speed of sound

(Hz) (Hz)

25 18.9 18.8
62 37.8 37.6
81 56.7 56.4
82 75.4 75.2
83 94.1 94.0

Irvine (1999) has given an analytical approach for determination of eigenfre-
quencies of a suspended, taut cable. Normalized natural eigenfrequencies, ω′, for
symmetrical in-plane eigenmodes can be found as solutions to the transcendental
equation

tan
ω′

2
=

ω′

2
− 4

γ2

(

ω′

2

)3

(3)

The parameter γ2 is

γ2 =
(ρAg cos θ)2 l3EA

F 3Le

where the symbols are defined in Table 1 and the parameter, Le, is

Le ≈ l

(

1 + 8

(

δl/2

l

)2
)

,

where δl/2 is the sag at the middle of the cable. For taut cables, Le ≈ l.
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There are infinitely many solutions to (3) but for our purpose usually only
few eigenmodes are of interest. The unnormalized natural eigenfrequencies can
be found from

ω = ω′
√

F/(ρA)/l

Solving the above transcendental equation iteratively for our example gives
the eigenfrequencies shown in Table 4. There is fine agreement with the results
from our finite element model, confirming the validity of the model.

Table 4.: Comparison of symmetrical in-plane eigenfrequencies determined by the
finite element model and from Irvine’s analytical model.

Mode no Eigenfrequency Eigenfrequency
from FE model from Irvine’s model

(Hz) (Hz)

2 1.5913 1.5860
6 4.7634 4.7572
10 7.9064 7.9286

The analysis presented above is valid for fixed end points. In practice, one
or both end points will be moved during operation. Since the mass of the cable
near the end point is small compared to that of the attached parts, and since
the rotation angle of winches can be servo-controlled with high bandwidth and
stiffness, we can take the position of the end points as controlled input variables,
and we are then interested in the cable forces at the end points. To deal with
this, and for a moment ignoring damping, we rewrite (2):

M∆ü+K∆u = ∆f

This is the equation for the full system (including end points). For numer-
ical convenience, we now assume that the degrees of freedom have been re-
sorted, so that the first three components of ∆u are those of end point 1
((∆x1,∆y1,∆z1)) and the subsequent three components are those of end point 2
((∆xne+1,∆yne+1,∆zne+1)), and the remaining unsorted degrees of freedom are
for the inner nodes of the cable. This involves switching columns and rows of M
and K appropriately. We rewrite this equation on the form

[

M11 M12

M21 M22

]{

∆ü1

∆ü2

}

+

[

K11 K12

K21 K22

]{

∆u1

∆u2

}

=

{

∆f1
∆f2

}

where M22 in fact is identical to the previously defined M′, K22 is identical to
to K′, and ∆u2 identical to ∆u′. Due to the above assumption, to ignore the
influence of end cable mass on the motion of the end points, we let M11 ≈ 0.
Since M is diagonal, then M12 and M21 are also null matrices. Hence the above
equation becomes

K11∆u1 +K12∆u′ = ∆f1 (4)

M′∆ü′ +K′∆u′ = −K21∆u1 (5)

Since we merely wish to study the influence of end point movements, we have here
for simplicity assumed that there are no external forces on the cable in addition
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to those at the end points. Hence ∆f2 = 0 and ∆f1 is equal to the forces at
the end points. Then ∆u1 is known, whereas ∆f1 and ∆u′ are unknown. We
can study the influence of end point movements by solving the equations for the
end-constrained case with a load vector equal to −K21∆u1. Subsequently, the
end point forces can be found from (4).

4.2 State-space Model

The above model is a second-order linear model. To fully exploit the many useful
control engineering tools, we convert the model to a first-order state-space model
on the usual ABCD form:

v̇ = Av +Bw

y = Cv+Dw

where A is the system matrix, B the input matrix, C the output matrix, D the
feed-through matrix, v is a state-space vector, w an input vector, and y an output
vector. To determine the ABCD matrices, we first need to mass-normalize the
eigenvectors. If ψ is an eigenvector, then the product of ψ and a constant will
also be an eigenvector. We choose the constant for each eigenvector as described

in Andersen & Enmark (2011) such that Ψ′T
mM

′Ψ′

m = I, where Ψ′

m then is the
eigenvector matrix holding the mass-normalized eigenvectors. Further using the
methods presented in Andersen & Enmark (2011), we convert the second-order
model derived above to ABCD form:

A =

[

0 I

−(Ω′)2 −2ZΩ′

]

Bends = −
[

0

Ψ′T
m

]

K21

Bwind =

[

0

Ψ′T
m

]

Cends = K12

[

Ψ′

m 0
]

Dends = K11

The matrix Bends relates to an input originating from a translation along either
of the six degrees of the end points and the matrix Bwind deals with a force input
in three degrees of freedom for each of the internal nodes of the cable. The matrix
Z is a diagonal matrix holding the assumed damping ratios for each of the modal
coordinates.

This first-order model has twice as many degrees of freedom as the original
second-order model. It is possible to perform a model reduction by disregarding
those degrees of freedom that are outside the frequency range of interest. This is
done by including only modes up to a certain order. In addition, eigenmodes that
are known not to play a role, such as out-of-plane modes and anti-symmetrical in-
plane modes, can be omitted. The eigenvector matrix then becomes rectangular
with as many columns as there are eigenmodes retained and A becomes quadratic
with as many rows and columns as there are eigenmodes retained. A substantial
order reduction is then achieved.
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The ABCD model is a useful building block in any simulation model involv-
ing control of a suspended object. Several such blocks can be combined into a
large simulation model combining the dynamics of the individual cables and the
suspended object.

Using the above model, we can determine participation factors as described
in Andersen & Enmark (2011). For each mode, the value of the participation
factor is a measure of the involvement of the mode when excited by a given
input. For instance, the participation factors due to an excitation of the first
degree of freedom of the second end point of the cable will be

ξ = Ψ′T
mK21

{

0 0 0 1 0 0
}T

A value near zero of a participation factor signifies that the corresponding mode
is poorly excited, whereas a numerically large value means that the mode is
strongly excited. Table 2 shows participation factors for some of the more impor-
tant modes of the cable of our example for an axial movement of an end point.
The symmetrical low-order in-plane modes and the axial modes dominate when
excited by a horizontal movement of the end point. Out-of-plane modes and
anti-symmetrical modes are less important and can, in general, be disregarded in
the model.

Using the state-space model, it is straightforward to determine frequency
responses illustrating cable performance (Andersen & Enmark 2011). From a
scalar input, w, to a scalar output, y, of the state-space model, the frequency
response is

G(s) =
y(s)

w(s)
= C (sI−A)−1

B+D (6)

where C for the single-input-single-output case has only one row, B only one
column, and D only one column and row (scalar). The expression can be evalu-
ated by setting the Laplace operator s to iω, where ω is the angular frequency.
This involves solving a set of linear equations for every frequency at which the
frequency response is evaluated. We shall use this expression below.

5. Wind Load

Wind will act on the cable/gondola system in two ways, on the gondola and on
the suspension cables. To study the wind load on the gondola, outset may be
taken in a wind velocity spectrum. We choose a von Karman spectrum (Andersen
& Enmark 2011):

S(ν) = σ2
v ×

4Lv

v̄
× 1
(

1 + 70.7 (νLv/v̄)
2
)5/6

,

where Lv is the integral scale of turbulence for longitudinal fluctuations (some-
times also called the outer scale of turbulence), v̄ the mean air velocity, ν the
frequency, and σ2

v the turbulence variance. The integral scale of turbulence sets
the corner frequency between the Kolmogorov drop-off and the flat part of the
spectrum.
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Figure 6.: Wind velocity power spectral density with values applied for the exam-
ple. The solid curve does not include cutoff due to high-frequency spatial filtering
but the dashed curve does.

Figure 6 shows the spectrum for the typical values v̄ = 3 m/s and Lv = 25 m.
The dashed curve includes a weighting factor to account for the high-frequency
drop due to lack of coherence over the gondola:

χ =
1

1 +
(

ν
νc

)4/3
(7)

where

νc =
v̄

2ls
≈ v̄

2
√
Ac

,

where v̄ as before is the mean velocity, ls is a characteristic gondola dimension
and Ac a representative cross sectional area of the gondola. For our example, we
used Ac = 0.6 m2.

The wind force power spectrum can be determined from the wind velocity
spectrum (Andersen & Enmark 2011)

Sforce(ν) = Cd (ρairv̄)
2 S(ν) .

where Cd is the drag coefficient of the gondola and ρair the air density.
The power spectral density of the gondola excursion due to wind load can

then be determined from

Sdisp(ν) = |F (ν)|2 Sforce(ν)

where F (ν) is the frequency response from gondola wind force to gondola dis-
placement. The variance can be found as the area under the power spectral
density curve.

There is also a wind load on the cables, potentially exciting in-plane eigen-
modes by local, dynamical airflow in vertical direction with eddy sizes in the range
6-30 m. Also, the wind flow may generate flutter by vortex shedding, which will
be in the range 100-600 Hz. Due to lack of spatial coherence and the filtering
effect of the cable, this will only be an issue near the gondola. This effect has so
far not been studied in detail.
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Figure 7.: Generic gondola suspension model with only one cable to study the
influence of design parameters.

6. Design Parameter Selection

6.1 Generic Gondola Suspension Model

We now study the influence of various design parameters when using one or more
cables for position control of a gondola. To do so, as an abstraction, we assume
that the gondola is suspended by a single horizontal cable as shown in A) of Fig.
7. For our example, the gondola mass is taken to be 50 kg and the preload as
before 1344 N. The mathematical model is then equal to the state-space model
of the cable with the addition of two states for velocity and position of horizontal
gondola translation. The frequency response from a horizontal displacement of
the left end of the cable to the horizontal position of the gondola for our example
can be determined using (6) and is shown in A) of Fig. 8. We have here assumed a
damping ratio of 1 percent (although this is merely a rough estimate (Yamaguchi
& Jayawardena 1992).

With position feedback from the gondola, it is possible to suppress wind
disturbances with a winch control loop that controls the position of the left cable
end as shown in the block diagram of Fig. 9. The controller applied for our
example is a pure integrator with the addition of a pole/zero notch filter to
reduce the influence of the first eigenmode of the gondola suspension. The pole
is adjusted to match the first eigenfrequency of the gondola suspension with a
damping ratio of 0.05, and the zero is placed at 10 Hz with a damping ratio of
1. It is not possible entirely to cancel the influence of the first eigenmode, so
the bandwidth achievable for the closed-loop system will be less than the first
eigenfrequency of the gondola suspension system and generally in the range 0.1–
1 Hz depending on the choice of various design parameters.

We now turn to a study of the choice of various design parameters using the
model and example just described.
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Figure 8.: Frequency responses for the example introduced in Sect. 3.2. The
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Figure 9.: Block diagram for the winch control loop described in the text for the
example introduced in Sect. 3.2.
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6.2 Influence of Modulus of Elasticity

We first study the influence of the cable E-modulus on performance. The E-
modulus of the cable depends on the choice of material, and materials with a
high E-modulus are generally more expensive than those with a lower value. It
is obvious at the outset that the eigenfrequencies are important for servo control
of the position of a gondola. For our example, Table 5 shows the influence of
the E-modulus on the important eigenfrequencies for three different cables with
the same preload but with different E-moduli. Also shown are the static stiffness
values of the gondola suspension and the lowest gondola suspension eigenfrequen-
cies.

From Table 5 it is apparent that the E-modulus of the cable should be as
high as possible.

Table 5.: Influence of E-modulus on performance. Same preload for all cases
(1344 N).

Modulus of elasticity (GPa) 70 23.4 7

Cable eigenfrequency of mode 2 (Hz) 1.59 1.60 1.64
Cable eigenfrequency of mode 6 (Hz) 4.76 4.80 4.91
Cable eigenfrequency of mode 10 (Hz) 7.90 7.96 8.15
Cable eigenfrequency of mode 25 (Hz) 18.9 11.1 6.37
Cable eigenfrequency of mode 62 (Hz) 37.8 22.2 12.7
Static stiffness (N/m) 1024 346 109
Sag (m) 0.121 0.119 0.114
Lowest gondola eigenfrequency (Hz) 0.72 0.42 0.24
Excursion of gondola, RMS (mm)1 18 63 196

1 with wind load and closed-loop control of a 50 kg gondola

6.3 Choice of Preload

It is also of interest to study the influence of cable preload on performance.
Obviously, cable sag depends on the preload, leading to a dependence of the
geometric stiffness on preload.

As can be seen in Table 6, use of a too small preload is unattractive be-
cause of the drastic decrease in static stiffness of the gondola suspension and low
eigenfrequencies. However, above a certain limit, the influence of the preload is
marginal because the elastic stiffness dominates over the geometric stiffness.

6.4 Influence of Cable Density

Tables 7 and 8 show the influence of cable density on cable performance for
our generic suspension model with some representative preloads. As long as the
preload is sufficiently high, the density is not a design driver.

6.5 Choice of Material

Table 9 lists characteristics of some typical cable materials. With the previous
results in mind, we conclude that either an aramid (such as “Kevlar”) or regular
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Table 6.: Influence of preload.

Cable Length of Cable Static Lowest Lowest
preload unstressed sag at Stiffness in-plane gondola

cable equilib- at end cable eigen- eigen-
rium frequency frequency

(N) (m) (m) (N/m) (Hz) (Hz)

24200 183.195 0.601 9287 2.26 2.17
12100 184.488 0.121 9219 1.59 2.16
6056 185.142 0.243 9166 1.13 2.15
1363 185.668 1.081 7480 0.59 1.95
933 185.734 1.580 5380 0.57 1.65
361 186.000 4.088 698 0.55 0.59

Table 7.: Influence of cable density. Case 1: High preload.

Density (kg/m3) 1440 7800

Preload (N) 673 614
Sag (m) 0.243 1.271
Lowest cable eigenfrequency (Hz) 1.13 0.51
Static stiffness at end (N/m) 1019 956
Lowest gondola eigenfrequency (Hz) 0.72 0.71

Table 8.: Influence of cable density. Case 2: Low preload.

Density (kg/m3) 1440 7800

Preload (N) 40 174
Sag (m) 0.851 5.09
Lowest cable eigenfrequency (Hz) 0.55 0.49
Static stiffness at end (N/m) 77.6 191
Lowest gondola eigenfrequency (Hz) 0.49 0.31
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(galvanized) steel can be applied. Polyester and polyamid, which are widespread
rope materials, are not suitable for our application.

Table 9.: Choice of material.

Material Tensile strength Density E-modulus
(MPa) (kg/m3 (GPa)

Polypropylene 60 930 5
Polyester (Dacron) 1150 910 15
Polyamid (Nylon) 1000 1140 4
Aramid (Kevlar) 3000-3500 1440 70-140
Steel 1500-2000 7800 210
Stainless steel (Inox) 500-1000 7850 200

6.6 Choice of Cable Diameter

Table 10 shows performance characteristics for our generic example for four differ-
ent choices of cable diameter and some representative preloads. Obviously, there
is a higher wind drag for a thick cable than for a thin cable. Also, the static
gondola suspension stiffness depends on the cable diameter, and the excursions
of the gondola due to wind become much higher with a thin cable than with a
thick cable. Hence, the cable should be chosen as thick as possible taking into
account practical aspects, such as the need for more robust adjoining structures
with a thick cable and a high preload.

Table 10.: Choice of cable diameter.

Cable Cable Typical Static RMS RMS
diameter mass preload stiffness gondola gondola

6 m/s velocity1 excursion1

(mm) (kg) (N) (N/m) (mm/s) (mm)

1.85 0.72 1340 1020 87.5 19.6
3.70 2.88 5380 4100 22.3 2.60
5.55 6.47 12100 9200 9.4 0.73
7.40 11.5 21508 16400 5.3 0.31

1 Due to wind at 6 m/s acting on gondola and closed-loop position control with winch.

6.7 Location of winch

The winch may be placed on the gondola instead of on the ground as shown in the
generic model B) of Fig. 7. The corresponding frequency response from winch
position to gondola position is shown in curve B) of Fig. 8. It is equally difficult
to stabilize a control system with the winch located on the ground and on the
gondola, so there is no real advantage of moving the winch to the gondola.

In addition to the approaches for gondola stabilization studied here, a fast
beam steering mirror will be needed to compensate for gondola vibration. This
possibility has not yet been studied in detail.
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7. Discussion

We have set up a linear cable model using a non-linear finite element approach.
Model performance agrees well with existing analytical approaches and with
speed-of-sound considerations. Also, there is good agreement with the purely
analytical model formulated in our previous publication (Enmark et al. 2011).
The present model is however preferable due to its simplicity.

Using a cable example with a generic suspension model, we have studied the
influence of design parameter selection. We conclude that the preload should be
sufficiently high to ensure that the axial elasticity of the cable dominates over
the geometrical elasticity. From wind considerations, we find that the wind load
on the gondola dominates over wind load on the cable, although vortex shedding
(flutter) may be an issue near the gondola.

Aramid and steel are suitable cable materials. The cable diameters should
be as large as practically possible.

Gondola motion faster than about 1/2 fringe per millisecond cannot be de-
tected and taken into account with a fast camera working at 1 kHz. This corre-
sponds to 0.5-1 µm/ms in the near infrared. Although we here use a simple, very
generic model, the results of Table 10 tend to suggest that the gondola velocity
is too high even for short exposures (> 5.3 µ/ms), which could explain why no
stellar fringes have been detected at the Haute-Provence observatory test site
(Dejonghe et al. 2014). A closer study with a full model of all cables is on the
way to establish whether this is indeed the case.

Finally, it is apparent that gondola velocity and excursions due to wind are
far too high for long exposures without additional corrections, such as tip/tilt
beam steering, fringe tracking, etc. It is believed that a much better gondola sta-
bility can be obtained using servo-controlled reaction wheels and reaction masses
on board the gondola with appropriate angular and linear gondola acceleration,
velocity and position feedback. Gyros and accelerometers may be needed. A
further study of this possibility is planned.
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